• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fishing a line coupled with clockwork for daily rhythm

Bioengineer by Bioengineer
June 6, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Molecular mechanism of the interplay of clock proteins for generating a circadian oscillation

IMAGE

Credit: Koichi Kato

Organisms on this planet, including human beings, exhibit a biological rhythm that repeats about every 24 h to adapt to the daily environmental alteration caused by the rotation of the earth. This circadian rhythm is regulated by a set of biomolecules working as a biological clock. In cyanobacteria (or blue-green algae), the circadian rhythm is controlled by the assembly and disassembly of three clock proteins, namely, KaiA, KaiB, and KaiC. KaiC forms a hexameric-ring structure and plays a central role in the clock oscillator, which works by consuming ATP, the energy currency molecule of the cell. However, it remains unknown how the clock proteins work autonomously for generating the circadian oscillation.

The research groups at Graduate School of Pharmaceutical Sciences of Nagoya City University and Exploratory Research Center on Life and Living Systems (ExCELLS) and Institute for Molecular Science (IMS) of National Institutes of Natural Sciences investigated this mechanism by native mass spectrometry and nuclear magnetic resonance spectroscopy. They found that KaiC degrades ATP into ADP within its ring structure, which triggers the leaping out of the tail of KaiC from the ring. KaiA captures the exposed KaiC tail, facilitating ADP release from the ring, thereby setting the clock ahead.

This “fishing a line” mechanism explains the clockwork interplay of the KaiA and KaiC proteins. Elucidating this mechanism will provide deep insights into not only the circadian clock in cyanobacteria but also that in plants, animals, and humans under physiological and pathological conditions, including jet lag and sleep disorders.

###

Media Contact
Koichi KATO
[email protected]

Original Source

http://www.nagoya-cu.ac.jp/english/about/research-news/015155.html

Related Journal Article

http://dx.doi.org/10.26508/lsa.201900368

Tags: BiologyCircadian Rhythm
Share13Tweet8Share2ShareShareShare2

Related Posts

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

November 14, 2025
blank

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025

Targeting the Hippo Signaling Pathway: A New Therapeutic Approach for Nephronophthisis

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Body Image and Internalization: A Tripartite Model Insight

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Unifying Understanding of Endoplasmic Reticulum Exit Sites

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.