• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fish IgM structure sheds light on antibody evolution, study finds

Bioengineer by Bioengineer
November 27, 2023
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Antibodies—proteins that are produced by our immune system to protect us—are crucial for recognizing and getting rid of unwanted substances, or antigens, in our body. Although their role is universal, antibody structure varies in different animals. In a new study, researchers have analyzed the antibody Immunoglobulin M in rainbow trout to shed some light on why these proteins may have evolved over time.

Researcher image

Credit: Fred Zwicky

Antibodies—proteins that are produced by our immune system to protect us—are crucial for recognizing and getting rid of unwanted substances, or antigens, in our body. Although their role is universal, antibody structure varies in different animals. In a new study, researchers have analyzed the antibody Immunoglobulin M in rainbow trout to shed some light on why these proteins may have evolved over time.

In humans, IgM consists of five repeating units that are held together by a joining chain, resulting in a star shape. Consequently, IgM can bind to multiple antigens at the same time, clearing them quickly. IgM is also unique because it is found both in the blood and the mucosa, which is a moist tissue that lines the body canals, including the nose, mouth, and intestine.

“Our lab studies the structure and functions of IgM, and we are interested in understanding how it is assembled,” said Beth Stadtmueller (MMG), an assistant professor of biochemistry. “We have been looking at fish and mammals because there are considerable differences in how their immune systems have evolved, and we want to understand why they build antibodies differently.”

The first big difference between antibody functions in fish and humans is that the mucosa of fish includes the skin. “In fish a large part of their mucosal surface is constantly exposed to their environment. Their antibodies, therefore, have to be able to be structurally stable so that they can stay in the mucosa instead of getting washed away by water, and they are likely to encounter different types of antigens compared to humans” said Mengfan Lyu, a graduate student in the Stadtmueller lab and the first author of the paper.

Another major difference between fish and human antibodies is that they lack the joining chain, which, in humans, lassos the tail ends of the five individual units together to create a stable star-like antibody. Fish IgM also has just four repeating units instead of five.  These differences have led scientists to wonder how a fish creates a stable IgM and how it functions. To better understand the structure of fish IgM, the researchers used rainbow trout IgM for their studies.

“So far, most studies have focused on how antibodies bind to antigens or on the structures of antibodies with a single unit because studies of antibodies containing more than one unit, or polymeric antibodies, have been challenging,” Lyu said. “Only in the past several years have researchers had access to high resolution cryogenic electron microscopy to reveal the structures of polymeric antibodies such as IgM.”

In humans, each repeating unit of IgM is a Y-shaped structure with two hands that bind to the antigen and a stalk.  In its star-like form, five stalks make up the central core together with the joining chain. Each repeating unit of fish IgM is similar to human IgM and researchers worked with just the stalk of the fish IgM since the full-length IgM was difficult to work with. Using the cryo-EM technique they discovered that at the core of the fish IgM, the individual units fold differently at their tail ends causing them to assemble toward one side, rather than the center of the IgM; this appears to allow them to interact even though they do not have a joining chain.

“As far as we know, this is the first fish antibody structure that has been characterized,” Stadtmueller said. “It is interesting because the joining chain is necessary for the vast majority of IgM assembly in birds and mammals. Lyu’s discovery tells us that the fish IgM assembles in a very different way and has a distinct structure. It is really interesting from an evolution perspective and implies that fish IgM and human IgM can bind antigens and function differently.”

It is unclear why the joining chain is absent in bony fish. “Clearly fish have evolved a way to make IgM without joining chain; it may be more efficient to assemble IgM this way, it may result in a more stable structure, or it may provide functional advantages particularly since fish encounter different antigens than humans and other components of their immune system are also distinct.” Lyu said, “All of these factors may have led to differences in the structure of IgM.”

The researchers are currently working on building the full-length IgM, which will include fragments that are missing in the present study. “This study is an example of how structural biology has given us a foundation to ask how antibodies can be functionally different,” Stadtmueller said. “We anticipate that we will be able to use what we have learned to study other polymeric antibodies, like those from birds, and build novel, therapeutic antibodies.”

The study “The structure of the teleost Immunoglobulin M core provides insights on polymeric antibody evolution, assembly, and function” was published in Nature Communications and can be found at https://www.nature.com/articles/s41467-023-43240-z. The work was funded by the National Institutes of Health and the University of Illinois Urbana-Champaign.



Journal

Nature Communications

DOI

10.1038/s41467-023-43240-z

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

The structure of the teleost Immunoglobulin M core provides insights on polymeric antibody evolution, assembly, and function.

Article Publication Date

21-Nov-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Immune Cells in the Brain: Crucial Architects of Adolescent Neural Wiring

August 26, 2025
Dihydromyricetin Shields Against Spinal Cord Injury Damage

Dihydromyricetin Shields Against Spinal Cord Injury Damage

August 26, 2025

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Blood and Fluid Signatures Predict IVF Embryo Success

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

Fluoxetine’s Impact on Weight and Waist Size

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.