• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First simulation of a full-sized mitochondrial membrane

Bioengineer by Bioengineer
May 8, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New algorithm links different scales, bringing simulated cell a step closer

IMAGE

Credit: Marrink Lab, University of Groningen

Scientists from the University of Groningen have developed a method that combines different resolution levels in a computer simulation of biological membranes. Their algorithm backmaps a large-scale model that includes features, such as membrane curvature, to its corresponding coarse-grained molecular model. This has allowed them to zoom in on toxin-induced membrane budding and to simulate a full-sized mitochondrial lipid membrane. Their approach, which was published in the journal Nature Communications on 8 May, opens the way to whole-cell simulations at a molecular level.

Molecular dynamics simulations are a powerful tool to study the movements and interactions of atoms and molecules. However, in many biological processes, large-scale changes in, for example, membrane shape are important. ‘These shape changes are of fundamental importance to the cell’s functioning,’ explains Siewert-Jan Marrink, Professor of Molecular Dynamics at the University of Groningen. ‘However, the time and length scale of these membrane shape changes are too large for simulations at a molecular resolution.’

Challenging

Even though an increase in computing power allows more complex and longer simulations, cell structures such as mitochondria are still beyond reach. That is why the Molecular Dynamics group has developed an algorithm that links large-scale changes to molecular level simulations. For mitochondria, they started with an electron micrograph density map. The densities were translated into lipid structures and these were used as the input for a molecular dynamics simulation with the Coarse Grain (CG) Martini force field, previously developed by Marrink.

‘The difficult part is to place the lipids in the correct orientation in this density map, which is especially challenging in bent areas,’ adds Wria Pezeshkian, a postdoctoral researcher in Marrink’s team and co-author of the paper. The algorithm allows users to add different kinds of lipids to the membrane, at a realistic packing level. Using this approach, Marrink and his colleagues were able to simulate the entire lipid membrane of a mitochondrion for two nanoseconds. Pezeshkian: ‘This structure contained more than five million lipids, which meant that the simulation had to deal with 80 million particles as each lipid molecule consists of multiple particles.’

Triangles

Considering the size and shape, this simulation’s complexity is larger than any simulation performed previously. ‘A simulation of microseconds would have been possible but, as we had no information on the localization of the proteins in the mitochondrial membrane, it only contained lipids and is therefore unstable,’ explains Marrink. Adding this extra complexity to the simulation is certainly possible and is currently in progress.

Instead of a density map, the input for the system could also be a continuum model, which represents the membrane surface as triangles made up of nodes that are connected by ‘springs’. Such a model can calculate forces generated by membrane deformation. Backmapping lipids and toxin proteins onto the corresponding parts of this model allowed Marrink and his colleagues to zoom in on molecular behaviour in the stalk of a membrane bud that was induced by the joint action of many toxins.

Synthetic cell

‘Our final goal is to simulate an entire eukaryotic cell and zoom in on specific parts of this object,’ says Marrink. This is currently out of reach, although the current system already allows simulation of large objects inside a cell, such as the endoplasmic reticulum or the Golgi apparatus. ‘And we could probably simulate a red blood cell.’

A simple synthetic cell may soon be within reach. Marrink is involved in a project aimed at creating a synthetic cell and being able to simulate processes such as cell division would help its design. ‘We would really like to know which lipids and proteins could play a role in cell constriction during division.’

###

Simple Science Summary

Scientists use computer simulations to study the interaction of molecules in cells. However, many interactions are affected by processes on a time and length scale that is beyond the current limits for molecular simulations. Scientists from the University of Groningen have therefore developed a system where they use input from either density maps or large-scale models and zoom in on selected parts. These are then studied using detailed simulations at a molecular level. Using this technique, they successfully simulated the entire membrane of a mitochondrion, a large organelle inside cells. This technique enables the simulation of a variety of cell organelles and is a stepping stone towards simulations of entire cells.

Reference: Weria Pezeshkian, Melanie König, Tsjerk A. Wassenaar and Siewert J. Marrink: Backmapping triangulated surfaces to coarse-grained membrane models. Nature Communications, 8 May 2020

Media Contact
Rene Fransen
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16094-y

Tags: BiologyBiomechanics/BiophysicsCell BiologyComputer ScienceMolecular PhysicsSoftware Engineering
Share12Tweet8Share2ShareShareShare2

Related Posts

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025
blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Addiction-like Eating Tied to Deprivation and BMI

Mosquito Gene Response Reveals Japanese Encephalitis Entry

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.