• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

First of its kind cancer stem cell research unlocks clues to treatment resistance

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Trinity College Dublin have made exciting new findings that could offer a means of fighting resistance to treatment for people with oesophageal cancer. Resistance to radiotherapy is a major stumbling block in the treatment of this cancer.

For the first time, the research team led by Dr Stephen Maher, Ussher Assistant Professor in Translational Oncology at Trinity, have discovered that a molecule lost from cancer stem cells, called miR-17, is important in driving oesophageal tumour resistance to radiotherapy.

The team of scientists, which incorporated specialists from Trinity, St. James's Hospital Dublin, the Coombe Women and Infant's University Hospital and the University of Hull in the UK, demonstrated that populations of tumour cells that had higher numbers of cancer stem cells formed larger, more aggressive tumours. They also demonstrated that the cancer stem cells were more resistant to radiation-induced cell death.

The findings from this ground breaking research were recently published in the international peer-reviewed journal Oncotarget.

Many oesophageal cancer patients receive radiotherapy and chemotherapy to shrink their tumour prior to surgery and this forms a key part of their treatment. Unfortunately, while a subset of patients have excellent responses to treatment, the majority of patients are actually resistant to various degrees, and are subjected to treatment side effects and an unnecessary delay to surgery, which can worsen their overall prognosis. To date there hasn't been a way to test which patients will respond well to radiotherapy or to reduce resistance to radiotherapy.

Cancer stem cells are a tiny population of tumour cells that exist inside most tumours, and acquire some of the features of normal stem cells. Normal stem cells are unspecialised cells that can be characterised by the ability to change into mature, specialised cells, like the normal cells that make up the normal oesophagus. When normal tissues are damaged, through injury for example, stem cells in the local environment, help to repopulate and rebuild the normal tissue. However, in a tumour, cancer stem-like cells, the tumour cells that have acquired stem cell-like abilities, are able to drive and maintain the growth of tumours and repopulate the tumours following the damage caused by radiotherapy and chemotherapy.

"This work is extremely important in understanding why tumours are inherently resistant to radiotherapy, and how they can acquire resistance. Our findings strongly suggest that it is the cancer stem cell population that we need to destroy if treatment is going to be effective in our oesophageal cancer patients", said Dr Maher.

"Up until recently cancer stem cells were largely considered hypothetical, as there were no clear ways to identify and isolate them. In this study we spent a tremendous effort in identifying tumour cells that had biological markers normally characteristic of stem cells. Once we had identified these stem-like tumour cells, we isolated them and started to pick apart their biology", continued Dr Maher.

The work, predominantly performed by Dr Niamh Lynam-Lennon, an Irish Research Council-funded Senior Research Fellow with Trinity's Department of Surgery, showed that the population of cancer stem cells could be further broken down into smaller groups, which had distinct radiation sensitivity profiles. Further genetic analysis revealed that the levels of a powerful gene-regulating molecule, called miR-17, were particularly low in the cancer stem cells that were most resistant to radiation. In patient samples, miR-17 was found to be much lower in the tumours of patients who did not respond to treatment.

"Interestingly, in the lab we found that if we put a synthetic version of miR-17 into the resistant cells they became more sensitive to radiation. Going forward, we could use synthetic miR-17 as an addition to radiotherapy to enhance its effectiveness in patients – this is a real possibility as a number of other synthetic miR-molecules are currently in clinical trials for treating other diseases", said Dr Lynam-Lennon.

Oesophageal adenocarcinoma, a cancer of the food-pipe, is a major problem in Ireland, the UK and the rest of the western world. Its incidence has increased by 600% over the past three decades, representing the largest increase in incidence of any disease of any kind over the same time period, and rates are projected to continue increasing over the next 20 years.

###

The work was largely funded by the Health Research Board (HRB) and involved research on cells grown in the lab, in vivo research and tumour samples from oesophageal cancer patients.

The paper is available here.

Media Contact

Yolanda Kennedy
[email protected]
353-863-860-638
@tcddublin

http://www.tcd.ie/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

October 4, 2025

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

October 4, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

UmamiPredict: AI Unveils Umami Taste of Molecules

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

tRF-34-86J8WPMN1E8Y2Q Fuels Gastric Cancer Progression

Discovering Wuwei Xiaodu Decoction’s Anti-Inflammatory Mechanisms

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.