• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

First look inside nanoscale catalysts shows ‘defects’ are useful

Bioengineer by Bioengineer
January 11, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: (Hebrew University of Jerusalem)

Using one of the world's brightest light sources to peer inside some of the world's smallest particles, scientists have confirmed a longstanding hypothesis: that atomic disorder or "defects" at the edges of nanoparticles is what makes them effective as chemical change agents.

The process by which a change agent, or catalyst, accelerates a chemical reaction is key to the creation of many materials essential to daily life, such as plastics, fuels and fertilizers. Known as catalysis, this process is a basic pillar of the chemical industry, making chemical reactions more efficient and less energy-demanding, and reducing or even eliminating the use and generation of hazardous substances.

Although catalysts have been used in industry for more than a century, scientists have yet to observe how their structure impacts their effectiveness as change agents. That's because catalysts are typically tiny metallic nanoparticles made of precious metals such as Platinum, Palladium or Rhenium. The extreme smallness that makes nanoparticles such effective catalysts also makes it hard to see how they work.

If scientists could peer inside individual nanoparticles' chemical reactions at a nanoscopic level, they would gather a treasure of useful knowledge for the design of improved catalysts to address the pressing energy needs of the 21st century.

That type of knowledge may now be close at hand, thanks to new research published January 11 in the journal Nature. In the new study — led by Dr. Elad Gross from the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem, and Prof. F. Dean Toste from the College of Chemistry at University of California, Berkeley, and Chemical Science Division at Lawrence Berkeley National Laboratory — researchers directly observed for the first time how metallic nanoparticles, used as catalysts in numerous industrial processes, activate catalytic processes.

Using a light source one million times brighter than the sun, the researchers were able to observe chemical reactivity on single Platinum particles similar to those used as industrial catalysts. What they found is that chemical reactivity primarily occurs on the particles' periphery or edges, while lower reactivity occurs at the particles' center.

The different reactivity observed at the center and edges of Platinum particles corresponds to the different properties of the Platinum atoms in the two locations. The atoms are mostly flat at the center, while they're corrugated and less-ordered at the edges. This disorderly or "defective" structure means that Platinum atoms at the edges are not totally surrounded by other Platinum atoms, and will therefore form stronger interactions with reactant molecules. Stronger interactions can activate the reactant molecules and initiate a chemical reaction that will transform the reactant molecule into a desired product.

The research findings validate a well-known hypothesis in the world of catalysis, which correlates high catalytic reactivity with high density of atomic defects. It also shows, for the first time, that the enhanced reactivity of defected sites can be identified at the single-particle level.

"Our findings provide insights about the ways by which the atomic structure of catalysts controls their reactivity. This knowledge can direct the design of improved catalysts that will make chemical process greener, by decreasing the amount of energy that is consumed in the process and preventing the formation of unwanted, potentially hazardous, products," said Dr. Elad Gross, from the Institute of Chemistry and the Center for Nanoscience and Nanotechnology at the Hebrew University of Jerusalem.

To peer into individual nanoparticles, researchers focused a bright infrared beam generated in a synchrotron source (Advanced Light Source, Lawrence Berkeley National Laboratory) into a thin probe with an apex diameter of 20 nanometers. The probe acts as an antenna, localizes the infra-red light in a specific range, and by that provides the capabilities to identify molecules which reside on the surface of the catalytic nanoparticles. By scanning the particles with the nanometric probe while it is being radiated by the infrared light, the researchers were able to identify the locations and conditions in which chemical reaction occurs on the surface of single particle.

###

The Hebrew University of Jerusalem is Israel's leading academic and research institution, producing one-third of all civilian research in Israel. For more information, visit http://new.huji.ac.il/en.

Media Contact

Dov Smith
[email protected]
972-258-82844
@HebrewU

http://new.huji.ac.il/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

AAV Boosts STC-1, Eases Neuroinflammation, Saves Vision

September 2, 2025

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

September 2, 2025

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

September 2, 2025

Evaluating Mindfulness Intervention for Self-Injury Recovery

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28
>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AAV Boosts STC-1, Eases Neuroinflammation, Saves Vision

MASL Alters OSCC Cells: Growth, Motility, Morphology Changes

Herbal Extracts Enhance Antibiotic Effects on Resistant Pathogens

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.