• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First dynamic spine brace — robotic spine exoskeleton — characterizes spine deformities

Bioengineer by Bioengineer
April 9, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Sunil Agrawal/Columbia Engineering

New York, NY–April 9, 2018–Spine deformities, such as idiopathic scoliosis and kyphosis (also known as "hunchback"), are characterized by an abnormal curvature in the spine. The children with these spinal deformities are typically advised to wear a brace that fits around the torso and hips to correct the abnormal curve. Bracing has been shown to prevent progression of the abnormal curve and avoid surgery. The underlying technology for bracing has not fundamentally changed in the last 50 years.

While bracing can stop/retard the progression of abnormal spine curves in adolescents, current braces impose a number of limitations due to their rigid, static, and sensor-less designs. In addition, users find them uncomfortable to wear and can suffer from skin breakdown caused by prolonged, excessive force. Moreover, the inability to control the correction provided by the brace makes it difficult for users to adapt to changes in the torso over the course of treatment, resulting in diminished effectiveness.

To address these deficiencies, Columbia Engineering researchers have invented a new Robotic Spine Exoskeleton (RoSE) that may solve most of these limitations and lead to new treatments for spine deformities. The RoSE is a dynamic spine brace that enabled the team to conduct the first study that looks at in vivo measurements of torso stiffness and characterizes the three-dimensional stiffness of the human torso. The study was published online March 30 in IEEE Transactions of Neural Systems and Rehabilitation Engineering.

"To our knowledge, there are no other studies on dynamic braces like ours. Earlier studies used cadavers, which by definition don't provide a dynamic picture," says the study's principal investigator Sunil Agrawal, professor of mechanical engineering at Columbia Engineering and professor of rehabilitation and regenerative medicine at Columbia University Vagelos College of Physicians and Surgeons. "The RoSE is the first device to measure and modulate the position or forces in all six degrees-of-freedom in specific regions of the torso. This study is foundational and we believe will lead to exciting advances both in characterizing and treating spine deformities."

Developed in Agrawal's Robotics and Rehabilitation (ROAR) Laboratory, the RoSE consists of three rings placed on the pelvis, mid-thoracic, and upper-thoracic regions of the spine. The motion of two adjacent rings is controlled by a six-degrees-of-freedom parallel-actuated robot. Overall, the system has 12 degrees-of-freedom controlled by 12 motors. The RoSE can control the motion of the upper rings with respect to the pelvis ring or apply controlled forces on these rings during the motion. The system can also apply corrective forces in specific directions while still allowing free motion in other directions.

Eight healthy male subjects and two male subjects with spine deformities participated in the pilot study, which was designed to characterize the three-dimensional stiffness of their torsos. The researchers used the RoSE, to control the position/orientation of specific cross sections of the subjects' torsos while simultaneously measuring the exerted forces/moments.

The results showed that the three-dimensional stiffness of the human torso can be characterized using the RoSE and that the spine deformities induce torso stiffness characteristics significantly different from the healthy subjects. Spinal abnormal curves are three-dimensional; hence the stiffness characteristics are curve-specific and depend on the locations of the curve apex on the human torso.

"Our results open up the possibility for designing spine braces that incorporate patient-specific torso stiffness characteristics," says the study's co-principal investigator David P. Roye, a spine surgeon and a professor of pediatric orthopedics at the Columbia University Irving Medical Center. "Our findings could also lead to new interventions using dynamic modulation of three-dimensional forces for spine deformity treatment."

"We built upon the principles used in conventional spine braces, i.e., to provide three-point loading at the curve apex using the three rings to snugly fit on the human torso," says the lead author Joon-Hyuk Park, who worked on this research as a PhD student and a team member at Agrawal's ROAR laboratory. "In order to characterize the three-dimensional stiffness of the human torso, the RoSE applies six unidirectional displacements in each DOF of the human torso, at two different levels, while simultaneously measuring the forces and moments."

While this first study used a male brace designed for adults, Agrawal and his team have already designed a brace for girls as idiopathic scoliosis is 10 times more common in teenage girls than boys. The team is actively recruiting girls with scoliosis in order to characterize how torso stiffness varies due to such a medical condition.

"Directional difference in the stiffness of the spine may help predict which children can potentially benefit from bracing and avoid surgery," says Agrawal.

###

About the Study

The study is titled "Robotic Spine Exoskeleton (RoSE):Characterizing the Three-dimensional Stiffness of the Human Torso in the Treatment of Spine Deformity."

Authors are: Joon-Hyuk Park (Army Research Lab at Aberdeen, MD); Paul R. Stegall (University of Pennsylvania); David P. Roye Jr., (Department of Pediatric Orthopedic Surgery, Columbia University Irving Medical Center, New York Presbyterian Morgan Stanley Children's Hospital); and Sunil K. Agrawal (Columbia Engineering and Department of Rehabilitation and Regenerative Medicine, Columbia University).

The study was funded by the National Science Foundation (NSF) National Robotics Initiative under the project "Dynamic Braces for Quantification and Treatment of Abnormal Curves in the Human Spine" (NSF IIS-1527087).

The authors declare no financial or other conflicts of interest.

LINKS:

Paper: http://ieeexplore.ieee.org/document/8328860/

DOI: 10.1109/TNSRE.2018.2821652

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7333

http://engineering.columbia.edu/

http://me.columbia.edu/sunil-agrawal

https://roar.me.columbia.edu/

ROYE: http://vesta.cumc.columbia.edu/ortho/facdb/profile/profile.php?id=ortho738 http://www.cumc.columbia.edu/

Columbia Engineering

Columbia Engineering, based in New York City, is one of the top engineering schools in the U.S. and one of the oldest in the nation. Also known as The Fu Foundation School of Engineering and Applied Science, the School expands knowledge and advances technology through the pioneering research of its more than 200 faculty, while educating undergraduate and graduate students in a collaborative environment to become leaders informed by a firm foundation in engineering. The School's faculty are at the center of the University's cross-disciplinary research, contributing to the Data Science Institute, Earth Institute, Zuckerman Mind Brain Behavior Institute, Precision Medicine Initiative, and the Columbia Nano Initiative. Guided by its strategic vision, "Columbia Engineering for Humanity," the School aims to translate ideas into innovations that foster a sustainable, healthy, secure, connected, and creative humanity.

Media Contact

Holly Evarts
[email protected]
212-854-3206
@CUSEAS

http://www.engineering.columbia.edu/

Related Journal Article

http://dx.doi.org/10.1109/TNSRE.2018.2821652

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

October 10, 2025
blank

Bifidobacterium adolescentis SPM2022 Shows Anti-Obesity Effects

October 10, 2025

Fire Yields Enduring Benefits for Bird Populations in Sierra Nevada National Parks

October 10, 2025

Uncovering Genetic Roots of Uveitis in Appaloosas

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1185 shares
    Share 473 Tweet 296
  • New Study Reveals the Science Behind Exercise and Weight Loss

    101 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    96 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linking COPD, Cardiovascular Admissions to Referral Compliance

Akkermansia muciniphila Supernatant Fights Resistant Enterococcus Faecalis

Bifidobacterium adolescentis SPM2022 Shows Anti-Obesity Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.