• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

First demonstration of antimatter wave interferometry

Bioengineer by Bioengineer
May 3, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © LHEP / AEC, University of Bern

Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics. This wave-particle duality was postulated already in 1924 by the French physicist Louis de Broglie. The existence of the wave property of matter has been successfully demonstrated in a number of experiments with electrons and neutrons, as well as with more complex matter, up to large molecules. For antimatter the wave-particle duality had also been proven through diffraction experiments. However, researchers of the QUPLAS collaboration now established the wave behavior in a single positron (antiparticle to the electron) interference experiment. The results are reported in the Science Advances journal.

An experiment already envisaged by Einstein

The QUPLAS scientific collaboration includes researchers from the University of Bern and from the University and Politecnico of Milano. To demonstrate the wave duality of single positrons they performed measurements with a setup similar to the so-called double-slit experiment. This setup was already suggested as a gedankenexperiment by famous physicists like Albert Einstein and Richard Feynman; it is often used in quantum theory to demonstrate the wave nature of particles. In the experiment particles (in this case positrons) are directed from a source to a position sensitive detector. In between there are gratings with patterns of two or more slits which the particles go through. Particles behaving like particles travel in straight lines and would produce a pattern corresponding exactly to the grating. If the particles have a wave nature, a striped interference pattern appears at the detector which is different from the grating. The new pattern is generated by the superposition of the waves emitted by the source and travelling through the grating.

Micrometric resolution

The researchers of the QUPLAS collaboration were able to generate for the first time such an interference pattern from single antimatter particle waves. It was obtained thanks to an innovative period-magnifying Talbot-Lau interferometer coupled to a nuclear emulsion position sensitive detector. “With the nuclear emulsions we are able to determine the impact point of individual positrons very precisely which allows us to reconstruct their interferometric pattern with micrometric accuracy – thus to better than millionth of a meter”, explains Dr. Ciro Pistillo of the Laboratory of High Energy Physics (LHEP) and Albert Einstein Center (AEC) of the University of Bern. This feature allowed the researchers to overcome the main limitations of antimatter experiments, namely low antiparticle flux and beam manipulation complexity.

The scientists of LHEP and AEC played a key role for the success of the project: Akitaka Ariga, Antonio Ereditato, Ciro Pistillo and Paola Scampoli were in particular responsible for the design, construction and operations of the emulsion detector and for the analysis of positron interaction data.

New field of investigations of antimatter

“Our observation of the energy dependence of interference pattern proves its quantum-mechanical origin and thus the wave nature of the positrons”, says Professor Paola Scampoli. The success of the experiment paves the way to a new field of investigations based on antimatter interferometry. A goal is for example to perform gravity measurements with exotic matter-antimatter symmetric atoms such as positronium. With this one could test the validity of the Weak Equivalence Principle for antimatter. This principle is at the basis of general relativity and has never been tested with antimatter. Future research fields based on antimatter interferometry could in the future provide information about the imbalance of matter and antimatter in the universe.

###

Media Contact
Ciro Pistillo
[email protected]

Tags: Chemistry/Physics/Materials SciencesParticle Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Dipole Model Reveals Inversion Mechanism of Dipolar Magnetic Fields

August 12, 2025
Chemical Breakthrough Could Transform Failing Malaria Drug into a Success

Chemical Breakthrough Could Transform Failing Malaria Drug into a Success

August 12, 2025

Breakthrough Quality Control for Graphene Oxide: Fastest and Most Affordable Method Yet

August 12, 2025

Revolutionary Smart Plastic: Self-Healing, Shape-Shifting, and Tougher Than Steel

August 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Validating Injury Simulations Using Muscle Data Under Anesthesia

Scientists Develop Safer RNA Therapies to Combat Inflammatory Diseases

Dipole Model Reveals Inversion Mechanism of Dipolar Magnetic Fields

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.