• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First aid kit in some living organisms helps fix DNA after lengthy sun exposure

Bioengineer by Bioengineer
July 12, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New York | Heidelberg, 12 July 2017 Sunburn in living organisms is caused by ultraviolet (UV) light from the sun damaging the DNA in the cells. Many organisms, however, have an in-built mechanism for repairing the sun damage. This is possible thanks to an enzyme called DNA photolyase, which is so specialised that cryptochrome, a structurally similar molecule, is unable to do the same job. By comparing both types of molecule, physicists can understand precisely how the ability of our enzymes to repair DNA boils down to the most minute structural details. In a study published in EPJ D, Katrine Aalbæk Jepsen from the University of Southern Denmark, in Odense, and her colleague Ilia Solov'yov pinpoint the mechanism by which repair enzymes bind to the damaged site.

In this study, the authors conducted simulations to examine the molecular- level dynamics of two similar molecules when binding to DNA. The first is an enzyme specialised in DNA repair, called (6-4) DNA photolyase, and the other is cryptochrome, which is very close to photolyase structurally but has a completely different biological function and is unable to recognise damage to DNA.

The authors found that the binding energy between (6-4) DNA photolyase and DNA is much lower than that between cryptochrome and DNA. This is due to electrostatic interactions between the positive charges on the protein surface of photolyase and the negatively charged backbone of the DNA. The team realised the importance of several charged amino acid residues in the enzyme, called K246 and R421, which are absent in cryptochrome. They found that R42 is specifically designed to keep the DNA strands at the damaged site inside the repair pocket of the enzyme separate.

###

Reference:

K. Aalbæk Jepsen and Ilia A. Solov'yov (2017), On binding specificity of (6-4) photolyase to a T(6-4)T DNA photoproduct, European Physical Journal D 71:155, DOI: 10.1140/epjd/e2017-70818-2

Media Contact

Sabine Lehr
[email protected]
49-622-148-78336
@SpringerNature

http://www.springer.com

http://www.springer.com/gb/about-springer/media/research-news/all-english-research-news/first-aid-kit-in-some-living-organisms-helps-fix-dna-after-lengthy-sun-exposure/13297746

Related Journal Article

http://dx.doi.org/10.1140/epjd/e2017-70818-2

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Think you can outsmart an island fox? Think again!

August 21, 2025
blank

California’s dwarf Channel Island foxes have relatively larger brains than their bigger mainland gray fox cousins, revealing unique island-driven evolution

August 21, 2025

Why Do Some People Age Faster? Study Identifies Key Genes Involved

August 21, 2025

Tidal Forces Spur the Rise of Urban Civilization in Southern Mesopotamia

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proximity Screening Boosts Graphene’s Electronic Quality

Revolutionary Laser Technique Simplifies Production of High-Performance Alloy Films

New Study Reveals 40% Decline in Leisure Reading Over Two Decades

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.