• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

First 3-D structure of the enzymatic role of DNA

Bioengineer by Bioengineer
January 24, 2018
in Biology, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

DNA does not always adopt the form of the double helix which is associated with the genetic code; it can also form intricate folds and act as an enzyme: a deoxyribozyme. A researcher from Spain and other scientists from the Max Planck Institute for Biophysical Chemistry (Germany) have solved the first three-dimensional structure of this biomolecule that has proved much more flexible than previously thought.

Chemists successfully isolated deoxyribozymes over 20 years ago – a DNA with the ability to act as an enzyme. However, until now they had not been able to associate its catalytic activity with the three-dimensional structure that provides such function to this DNA.

Now, European scientists from the Max Planck Institute for Biophysical Chemistry in Göttingen (Germany) have succeeded after having bombarded this molecule with X-rays in the SLS synchrotron in Switzerland. The results, published in the journal 'Nature', have made it possible to build the crystal structure of this 'DNAzyme' using computers.

"We have uncovered the first structure of a deoxyribozyme, and for the first time we can see that this DNA is capable of taking on forms as complex as those of protein enzymes or ribozymes an RNA capable of catalytic activity," points out the Spanish scientist Almudena Ponce-Salvatierra, a member of the European group responsible for accomplishing this breakthrough.

The researchers have broken the paradigm of the supposed stiffness of DNA -a sort of symbol that is popularly associated with the double helix of Watson and Crick-, by demonstrating that this molecule can also adopt complicated three-dimensional structures in addition to being much more flexible than what was previously thought.

Deoxyribozymes are single strands of DNA that are synthesised in the laboratory in order to exploit their catalytic activity. Specifically, the researchers have successfully visualised the structure of a deoxyribozyme named 9DB1, which catalyses the ligation of two RNA strands.

According to the authors of this study, the findings help us to better understand the molecular principles of the reactions in which this type of molecule plays a part.

"There are many applications for deoxyribozymes, from catalysing the ligation of two DNA or RNA fragments, to repairing any of its components, such as thymine," explains Ponce-Salvatierra, who announced that the clinical trials for its use in medicine are already underway.

###

References:

Almudena Ponce-Salvatierra, Katarzyna Wawrzyniak-Turek, Ulrich Steuerwald, Claudia Höbartner, Vladimir Pena. "Crystal structure of a DNA catalyst". Nature 529: 231-234, January 2016 (on line).

Media Contact

SINC
[email protected]
34-914-251-820
@FECYT_Ciencia

http://www.fecyt.es/fecyt/home.do

Share13Tweet7Share2ShareShareShare1

Related Posts

Violence Against Women in North-East Piedmont Emergency Rooms

November 12, 2025
blank

Transperineal Prostate Biopsy: Safety Without Antibiotics

November 12, 2025

Early LV Diastolic Function in Congenital Diaphragmatic Hernia

November 12, 2025

Shift Work and Chronotype Affect Hong Kong Nurses’ Sleep

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Violence Against Women in North-East Piedmont Emergency Rooms

Transperineal Prostate Biopsy: Safety Without Antibiotics

Early LV Diastolic Function in Congenital Diaphragmatic Hernia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.