• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Fibroblasts could provide new target for treatment of rheumatoid arthritis

Bioengineer by Bioengineer
November 23, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study led by researchers at the University of Birmingham reveals the key role of different types of fibroblast cells in the development of rheumatoid arthritis (RA), opening up a new avenue for research into treatment of the disease.

Synovial Fibroblasts (SFs) are cells that make up part of the connective tissue, or synovium, around human joints. In RA patients, SF cells cause damage by invading and attacking the cartilage and bone around the joint.

A team of researchers from the University of Birmingham's Institute of Inflammation and Ageing identified two distinct types of SF within the synovial membrane. The team showed that these cell types, defined by the presence of specific cell surface markers (PDPN and CD248), aggregate in different layers of the synovium, and just one (the PDPN type) is responsible for cartilage damage in RA patients.

During the study, SF cells from RA patients were grown in vitro within an artificial synovium, then 'activated' using stress-inducing proteins called cytokines. The artificial synovium containing the SFs was then inserted into a mouse (whose own immune system had been 'switched off'), along with human cartilage to simulate a joint, to see how the SF cells would develop in vivo.

Following implantation, tests showed that the 'lining' layer of the artificial synovium (i.e. the part closest to the cartilage) contained invasive PDPN type SFs, while the part that was further away from the cartilage contained the non-invasive CD248 type.

The study also confirmed recent findings that 'activated' SF cells can migrate, i.e. travel through blood vessels to attack other cartilage in the body. The researchers built on these findings by showing that PDPN type SF cells were the first to migrate, with CD248 cells only appearing in secondary tissue at a later stage.

Dr Adam Croft from the University of Birmingham, who led the research, said:

"This study not only shows the existence of distinct sub-sets of synovial fibroblasts, but also suggests that these cells are able to self-organise into lining and sub-lining layers in the presence of cartilage. Combined with the difference in migration rates between the two types of cell, these results are extremely promising in terms of finding new therapeutic targets for treatment of rheumatoid arthritis."

Current treatment for RA involves giving patients a combination of immunosuppressive drugs, which can have a serious impact on quality of life. The results of this study suggest that targeting SF cells processes could make future treatments not only more effective, but also more manageable for patients.

###

Media Contact

Liz Bell
[email protected]
44-121-414-2772
@unibirmingham

http://www.bham.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global vs. Iran: ML Predicts Cancer Deaths

Decoding microRNA Regulation in T Cells Efficiently

Two Prestigious Grants Empower Young Investigator to Advance Blood Cancer Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.