• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, July 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Fern becomes first in suborder to be classed as “independent gametophyte”

by
August 10, 2024
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered that the fern Hymenasplenium murakami-hatanakae can become independent gametophytes i.e. live for long periods without a spore-producing sporophyte. They collected specimens from Izu-Oshima Island, Japan, and used DNA analysis to show that this Aspleniineae fern, a suborder encompassing thirty percent of ferns on the planet, was part of this rare class. Studying the species further promises to reveal more about how ferns diversify and adapt.

Independent gametophytes of Hymenasplenium murakami-hatanakae.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered that the fern Hymenasplenium murakami-hatanakae can become independent gametophytes i.e. live for long periods without a spore-producing sporophyte. They collected specimens from Izu-Oshima Island, Japan, and used DNA analysis to show that this Aspleniineae fern, a suborder encompassing thirty percent of ferns on the planet, was part of this rare class. Studying the species further promises to reveal more about how ferns diversify and adapt.

 

The “alternation of generations” in plants and algae is the intricate cycle by which they reproduce. Each species has two “generations” within the cycle, sporophytes, which have two set of chromosomes (diploid), and gametophytes, which have only one (haploid). As gametophytes reach maturity, they produce gametes which fuse together to produce a diploid zygote (a “fertilized egg” cell). Zygotes continue to divide and eventually become sporophytes. Sporophytes produce spores through a process that halves the number of chromosomes; these divide and develop into gametophytes, and the cycle continues.

For most plants on land, sporophytes and gametophytes usually depend on each other for nutrition. Ferns, on the other hand, hold a special place in plant biology in that they do not. This gives rise to the interesting possibility that sporophytes and gametophytes exist for long periods of time in the absence of the other. While it is known that ferns spend most of their lives as sporophytes, it has been found that a few may exist as gametophytes for extended periods of time in the complete absence of sporophytes, as “independent gametophytes.” But due to their relative rarity, the life cycle of independent gametophytes remains poorly understood.

Inspired by promising preliminary work, a team of researchers led by Professor Noriaki Murakami from Tokyo Metropolitan University set their eyes on Hymenasplenium murakami-hatanakae, a member of the family Aspleniaceae. The species has been found growing in dark, damp environments on rocks beside rivers in warmer climates in Japan and Taiwan. The team collected specimens on Izu-Oshima Island, 300km south of Tokyo, and used a technique known as DNA barcoding to identify different species. Specifically, they compared DNA extracted from chloroplasts to identify sporophytes and gametophytes. Much to their surprise, they discovered that gametophytes of this species could exist for long periods of time in environments which were completely isolated from spores: the data revealed that they had discovered a new independent gametophyte.

The family Aspleniaceae is part of the Aspleniineae suborder which covers approximately thirty percent of all ferns on the planet: the team’s discovery is a first not only for the family, but the suborder as well. Prevailing wisdom was clear in that Aspleniineae spend most of their life on land as sporophytes; it seemed that gametophytes on Izu-Oshima Island were able to adapt to their rocky, isolated environment. Not only does this shed light on the evolution of gametophytes, important questions arise for what this might mean for plant ecology. The team hope to accumulate more knowledge on the species and understand how a wider range of fern species diversify and fill environmental niches.

This work was supported by JSPS KAKENHI Grant Numbers 19H03288 and 22J23537, and Tokyo Metropolitan University.



Journal

Journal of Plant Research

DOI

10.1007/s10265-024-01553-0

Article Title

Morphological and functional evolution of gametophytes in epilithic Hymenasplenium murakami-hatanakae (Aspleniaceae): The fifth family capable of producing the independent gametophytes

Article Publication Date

25-Jun-2024

Share13Tweet8Share2ShareShareShare2

Related Posts

How ‘Scrumping’ Apes Might Have Sparked Our Craving for Alcohol

How ‘Scrumping’ Apes Might Have Sparked Our Craving for Alcohol

July 31, 2025
Foraging for Fruit Crucial to Chimpanzee Survival and a Driving Factor in Human Evolution

Foraging for Fruit Crucial to Chimpanzee Survival and a Driving Factor in Human Evolution

July 31, 2025

Gut Bacteria Polypeptides Boost Rodent Metabolism

July 31, 2025

Philanthropy Drives EMBL’s Strategy, Placing AI at Its Core

July 31, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    36 shares
    Share 14 Tweet 9
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Understanding Plant Water Use: Grasses as Water Consumers and Forests as Conservators

Modeling the Unthinkable: Nuclear Winter’s Devastating Impact on Global Food Production

Survey of 300+ Adults Suggests Males Born in Summer May Have Higher Risk of Depression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.