• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Female promiscuity in butterflies controls paternity

Bioengineer by Bioengineer
December 21, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Thorin Jonsson

The eggs of some butterfly and moth species vary to give females control over the paternity of their offspring, according to new research published today.

The new study reveals for the first time that the number and location of micropyles (small openings in the outer surface of a female insect's eggs which allow sperm to enter) are driven by a degree of female promiscuity.

The researchers behind the study, based at the University of Lincoln, UK, suggest that an increased number of micropyles enables the female butterfly or moth greater control over fertilisation.

The study is published today (Wednesday 21st December 2016) in the Royal Society's scientific journal, Biology Letters.

"Our study, rather intriguingly, raises the possibility that promiscuous female moths and butterflies can choose which male fertilises their eggs," explained Dr Graziella Iossa from the University of Lincoln's School of Life Sciences, who led the study. "In the group of insects we studied, sperm from several different males may enter the egg via multiple micropyles but only one fuses with the female pronucleus – in a process called physiological polyspermy. This process facilitates the possibility of mate choice within an egg cell. Such a mechanism could be akin to that observed in the comb jelly (Beroe ovata), where the female pronucleus moves among the different sperm cells before combining with one. We therefore concluded that the presence of multiple micropyles increases the opportunity for post-copulatory choice about which sperm fertilises the egg.

"This is the first study to show that micropylar variation is driven by female promiscuity – the more micropyles her eggs have, the more choice she is likely to have over which male fathers her offspring."

In most insects, sperm fertilise the egg via micropyles but despite having this one primary function, there is a considerable and unexplained variation in the location, arrangement and number of micropyles within and between species. Until now few scientists have attempted to seek a functional explanation for these differences.

This is the first study of its kind and it furthers our understanding of the relationship between female mating patterns and the number of micropyles in her eggs.

The team of researchers also included Dr Paul Eady from Lincoln's School of Life Sciences and Professor Matthew Gage from the University of East Anglia. Together they examined the eggs of 56 species from different families of butterflies and moths, whose number of micropyles varied from one to 15.

The research also considers that an increased number of micropyles in the surface of an egg could represent a bet-hedging strategy for a female butterfly or moth where sperm numbers are limited, for example when competition is high.

The full paper is available to view online.

###

Media Contact

Cerri Evans
[email protected]
44-152-288-6165
@unilincoln

http://www.lincoln.ac.uk/home/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Culturally Tailored Tools for Early Eating Disorder Detection

September 2, 2025
blank

Assessing Clonal Fidelity in Pterocarpus Marsupium Plantlets

September 2, 2025

MRI Radiomics and Tumor Microenvironment in Cervical Cancer

September 2, 2025

Evaluating Acupuncture Guidelines for Chronic Pain Relief

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Culturally Tailored Tools for Early Eating Disorder Detection

Assessing Clonal Fidelity in Pterocarpus Marsupium Plantlets

MRI Radiomics and Tumor Microenvironment in Cervical Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.