• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Feeling the pressure with universal tactile imaging

Bioengineer by Bioengineer
November 15, 2018
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Osaka University

Osaka, Japan – Touch, or tactile sensing, is fundamentally important for a range of real-life applications, from robotics to surgical medicine to sports science. Tactile sensors are modeled on the biological sense of touch and can help researchers to understand human perception and motion. Researchers from Osaka University have now developed a new approach to pressure distribution measurement using tactile imaging technology.

Pressure is one of the primary characteristics of touch, and tactile imaging can be used to measure pressure or stress distributions across an object of interest. The most common current approach to tactile imaging involves use of an array of sensors composed of pressure-sensitive materials. However, such arrays require complex fabrication processes and place limitations on the sensor design, hence the necessity of a new method, now outlined in an article in IEEE Transactions on Industrial Electronics.

"The pressure between two conductors is directly related to the electrical contact resistance between them," states Osaka University's Osamu Oshiro. "We used this relationship to develop a sensor composed of a pair of electromechanically coupled conductors, where one conductor had a driving function and the other performed the probe function. This sensor has no need for pressure-sensitive materials and is simpler to manufacture."

This strategy enabled development of a universal tactile sensor for contact pressure distribution measurement using simple conductive materials such as carbon paint. The design concept combined innovation in mechatronics technology, which enabled development of a flexible sensor based on conventional conductors connected to electrodes, with a tomography-based approach to determining the pressure distribution across the coupled conductors.

The proposed method improved on previous electrical impedance tomography-based tactile sensing techniques to provide sensors with high positional accuracy, adjustable sensitivity and range, and a relatively simple fabrication process. "The sensors can be realized using various conducting materials, including conductive fabrics and paints," says lead author Shunsuke Yoshimoto. "Sheet-type flexible sensors were fabricated, along with finger-shaped sensors produced by coating 3D-printed structures with conductive paint, to illustrate possible practical applications."

The ease of adjustment of the sensitivity and sensing range and the pressure estimation precision means that this tactile imaging approach is expected to enable advanced control of multipurpose robots. "These sensors are expected to be applicable in fields including remote device operation and industrial automation," states co-author Yoshihiro Kuroda.

###

A related movie can be shown at the following link: https://youtu.be/e2boH-Peogs

The article, "Tomographic Approach for Universal Tactile Imaging with Electromechanically Coupled Conductors" was published in IEEE Transactions on Industrial Electronics at DOI: https://doi.org/10.1109/TIE.2018.2879296.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities.?The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum. Website: http://resou.osaka-u.ac.jp/en/top

Media Contact

Saori Obayashi
[email protected]
81-661-055-886
@osaka_univ_e

http://www.osaka-u.ac.jp/en

Original Source

https://resou.osaka-u.ac.jp/en/research/2018/20181114_2 http://dx.doi.org/10.1109/TIE.2018.2879296

Share12Tweet8Share2ShareShareShare2

Related Posts

Sex-Specific Models Enhance Abdominal Aortic Aneurysm Predictions

November 11, 2025

Exergame Training Boosts Physical, Cognitive Health in Seniors

November 11, 2025

New Computational Method Promises to Compress Decades of Disease Biology Research into Days

November 11, 2025

Why People Avoid Using Alcohol and Cannabis Together

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex-Specific Models Enhance Abdominal Aortic Aneurysm Predictions

Exergame Training Boosts Physical, Cognitive Health in Seniors

New Computational Method Promises to Compress Decades of Disease Biology Research into Days

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.