• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Featherweight oxygen’ discovery opens window on nuclear symmetry

Bioengineer by Bioengineer
April 1, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy Michigan State University

Researchers at Washington University in St. Louis have discovered and characterized a new form of oxygen dubbed “featherweight oxygen” — the lightest-ever version of the familiar chemical element oxygen, with only three neutrons to its eight protons.

Oxygen is one of the most abundant elements in the solar system, but oxygen-11 can be produced only in a laboratory. It decays immediately after its creation by emitting two protons, and it can be observed solely through detection of its decay products. Two-proton decay is the most recently discovered nuclear decay channel.

“What is most interesting to the nuclear physics community, however, is that oxygen-11 is the nuclear mirror of lithium-11, a very well-studied heavy isotope of lithium,” said Tyler Webb, a PhD candidate in physics in Arts & Sciences at Washington University, who works with Robert J. Charity, research professor of chemistry in Arts & Sciences, and Lee G. Sobotka, professor of chemistry and of physics. Webb is the first author of a new paper on the discovery in Physical Review Letters.

In nuclear physics, nuclei are said to be mirrors when one has a certain number of neutrons and protons and the other has a reversed amount, such as the 3:8 ratio of neutrons to protons in oxygen-11 as compared to the 8:3 ratio in lithium-11.

“When talking about mirror nuclei, we expect a sort of symmetry to hold,” Webb said. “The properties of a nucleus and its mirror should be similar: Quantum states should be roughly close in energy relative to the nucleus’s ground state and the wave functions of those states should be similar.”

This symmetry can be stretched or broken, however. Scientists can compare the actual structure of mirror nuclei against their expected structure to learn more about this important symmetry of atomic nuclei, the stuff that composes the visible matter of the universe.

In this case, the researchers are most excited to compare lithium-11, which they know has two very loosely bound neutrons in a “halo” orbiting its core, to oxygen-11, which has two unbound protons.

The Washington University researchers pieced together evidence of oxygen-11 in an experiment conducted at the National Superconducting Cyclotron Laboratory on the campus of Michigan State University. The Physical Review Letters paper outlines both the experiment and the supporting calculations conducted by theoretical nuclear physicists Witold “Witek” Nazarewicz and Simin Wang of Michigan State University. Researchers from University of Connecticut and Western Michigan University also participated in the collaboration.

###

Media Contact
Talia Ogliore
[email protected]

Original Source

https://source.wustl.edu/2019/04/featherweight-oxygen-discovery-opens-window-on-nuclear-symmetry/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.122.122501

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesNuclear Physics
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Thiophene-Doped Fully Conjugated Covalent Organic Frameworks Boost Photocatalytic Hydrogen Peroxide Production Efficiency

October 28, 2025
blank

Climate impacts of biochar and hydrochar differ in boreal grasslands

October 27, 2025

Cracking the Code of ‘Sticky’ Chemistry: A Path to Cleaner, More Efficient Fuels

October 27, 2025

Exploring the Role of Water-Soluble Polymers in Wastewater Treatment

October 27, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1287 shares
    Share 514 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    197 shares
    Share 79 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Probabilistic UAV Activation in Stochastic Geometry Networks

Advancing Lithium-Ion Battery Health Estimation with AI

Perillaldehyde Reduces Insulin Resistance in Trophoblasts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.