• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Faulty cell signaling derails cerebral cortex development, could it lead to autism?

Bioengineer by Bioengineer
September 20, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Anton Lab, UNC School of Medicine

CHAPEL HILL, NC – As the embryonic brain develops, an incredibly complex cascade of cellular events occur, starting with progenitors – the originating cells that generate neurons and spur proper cortex development. If this cascade malfunctions – if one tiny protein doesn't do its job – then the brain can develop abnormally.

UNC scientists led by Eva Anton, PhD, professor of cell biology and physiology in the UNC School of Medicine, have shown how the deletion of the protein APC in progenitor cells leads to massive disruption of brain development and the canonical Wnt protein pathway – a signaling cascade- that previously was linked to genes associated with autism.

"Although our experiments were done in mouse genetic models, human APC mutations have been associated with autism," said Anton, a member of the UNC Neuroscience Center and the new UNC Autism Research Center. "These mutations disrupt the ability of brain progenitors to respond appropriately to the environmental cues necessary for them to divide, and to generate and guide neurons during brain development."

The Anton lab findings come on the heels of other studies in autism suggesting that, in some cases, the long path toward autism symptoms begins when the development of progenitor cells in the cerebral cortex is disrupted. Other researchers conducted genetic analyses of people with autism to discover that the Wnt signaling pathway was disrupted in these patients.

These two studies led Anton to suspect that something within the Wnt signaling process in progenitor cells could be a culprit, and he set out to test his hypothesis.

In the developing embryonic brain, Wnt triggers a so-called degradation complex inside the progenitor cell's cytoplasm. This complex destroys the protein β-catenin, thus limiting β-catenin's ability to enter the nucleus. And that's important because as progenitor cells divide, this control of ?-catenin's access to the nucleus plays an important role in gene expression and ultimately how neurons are created and how they are channeled to their proper position in various parts of the brain. Given the important role Wnt signaling plays in cell proliferation, it isn't surprising that Wnt signaling also drives various cancers, as other researchers have found.

In experiments led by Naoki Nakagawa, PhD, a postdoctoral researcher in Anton's lab, UNC scientists explored what would happen if they altered the degradation complex. One protein in that complex is APC. When Nakagawa deleted APC, the β-catenin was left unchecked, triggering unregulated patterns of gene expression in progenitors.

"If that happens, everything falls apart," Anton said. "The brain doesn't form properly. We need β-catenin to get tagged for destruction by that protein complex. If it doesn't, then Wnt abnormally activates genes in progenitors, causing them to behave abnormally."

When Nakagawa titered down β-catenin in mice that lacked APC, the mice developed normally. In yet another experiment in mice with APC, Anton's team hyper-activated β-catenin independent of APC and again the brains didn't develop properly. "This showed us that it truly was the deregulation of β-catenin that caused problems," Anton said. "And it's APC in that protein complex that's key to proper regulation."

Although this work suggests neuropsychiatric conditions may arise due to mutations in the embryonic brain – which means it would be much more difficult to medically address – Anton says it's too early to say nothing could be done to address problems of Wnt signaling in progenitors, in relation to its role in the rise of autism in children later.

"We want to now focus on the syndromic autism genes," Anton said. "Those are the genes we know can cause autism. Some of these genes are expressed in progenitor cells. We want see if deregulation of Wnt signaling triggers changes in syndromic autism gene expression and function in human progenitors," Anton said.

For that, Anton's lab would start with mouse models. If they show that Wnt signaling in progenitors involves autism genes, then Anton's lab could turn to human progenitor cells and grow them into "minibrains" to study if progenitors are truly affected in autism patients.

Anton added, "Although progenitor defects cannot be treated in mature brain neurons, with such studies we could at least pinpoint what changed and what needs to be corrected in people who develop autism because of subtle but crucial brain changes before birth."

###

The National Institutes of Health funded this research. Other authors included postdoc Keiko Yabuno-Nakagawa, PhD, lab manager Robin Taylor, and former Anton lab postdocs Jingjun Li, PhD, Martin Cowles, PhD, and Tae-Yeon Eom, PhD.

Media Contact

mark derewicz
[email protected]
984-974-1915
@UNC_Health_Care

UNC School of Medicine

Original Source

http://news.unchealthcare.org/news/2017/september/faulty-cell-signaling-derails-cerebral-cortex-development-could-it-lead-to-autism

Share12Tweet8Share2ShareShareShare2

Related Posts

Broad-Range Phages Thrive Across Diverse Ecosystems

Broad-Range Phages Thrive Across Diverse Ecosystems

September 19, 2025
AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel Nanoparticle System Boosts Cancer Treatment Efficacy

Risk-Based Approaches to Kidney Health in Diabetes

Day-2 Heart Imaging and Biomarkers in HIE Neonates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.