• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Faster LEDs for wireless communications from invisible light

Bioengineer by Bioengineer
July 30, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kazunobu Kojima, Tohoku University

Researchers have solved a major problem for optical wireless communications – the process by which light carries information between cell phones and other devices. Light-emitting diodes (LEDs) pulse their light in a coded message that recipient devices can understand.

Now, a team of researchers based in Japan has married the two options into the ideal combination of long lasting and fast LEDs. They published their results on July 22 in Applied Physics Letters.

“A key technology for faster modulation is to decrease the device si earch for Advanced Materials at Tohoku University. “However, this tactic creates a dilemma: although smaller LEDs can be modulated faster, they have lower power.”

Another issue is that both visible and infrared optical wireless communications can have significant solar interference, according to Kojima. To avoid confusion with visible and infrared solar light, the researchers aimed to improve LEDs that specifically communicate via deep ultraviolet light, which can be detected without solar interference.

“Deep ultraviolet LEDs are currently mass produced in factories for applications related to COVID-19,” Kojima said, noting that deep ultraviolet light is used for sterilization processes as well as in solar-blind optical wireless communications. “So, they’re cheap and practical to use.”

The researchers fabricated the deep ultraviolet LEDs on sapphire templates, which are considered an inexpensive substrate, and measured their transmission speed. They found that the deep ultraviolet LEDs were smaller and much quicker in their communications than traditional LEDs at that speed.

“The mechanism underlying this speed is in how a lot of tiny LEDs self-organize in a single deep ultraviolet LED,” Kojima said. “The tiny LED ensemble helps with both power and speed.”

The researchers want to use the deep ultraviolet LEDs in 5G wireless networks. Many technologies are currently under testing to contribute 5G, and Li-Fi, or light fidelity, is one of the candidate technologies.

“Li-Fi’s critical weakness is its solar dependency,” Kojima said. “Our deep ultraviolet LED-based optical wireless technology can compensate for this problem and contribute to society, I hope.”

###

This work was supported in part by Five-Star Alliance and the Japan Society for the Promotion of Science.

Media Contact
Kazunobu Kojima
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/faster_leds_for_wireless_communications.html

Related Journal Article

http://dx.doi.org/10.1063/5.0013112

Tags: Technology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

February 7, 2026

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

February 7, 2026

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

February 7, 2026

Structure-Guided Development of Picomolar Macrocyclic Inhibitors Targeting TRPC5 Channels with Antidepressant Effects

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Deep Learning Uncovers Tetrahydrocarbazoles as Potent Broad-Spectrum Antitumor Agents with Click-Activated Targeted Cancer Therapy Approach

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.