• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Family tree secrets: Island tree populations older, more diverse than expected

Bioengineer by Bioengineer
January 21, 2023
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tsukuba, Japan—It’s often assumed that island plant and animal populations are just the simple, fragile cousins of those on the mainland. But now, researchers from Japan have discovered that island populations may be a lot tougher and more complex than previously thought.

Image Photo

Credit: University of Tsukuba

Tsukuba, Japan—It’s often assumed that island plant and animal populations are just the simple, fragile cousins of those on the mainland. But now, researchers from Japan have discovered that island populations may be a lot tougher and more complex than previously thought.

In a recently published study, a research group led by the University of Tsukuba has revealed that the northernmost island populations of Siebold’s beech, Fagus crenata, are older and genetically more diverse than expected.

Island and mainland populations often differ as a result of islands’ geographical isolation, which is often assumed to restrict the genetic diversity of their populations. However, a number of studies on land plants have shown that island populations have considerable genetic diversity despite their remoteness, indicating that the processes underlying their diversity are more complex than previously thought.

“Although many island populations have existed for thousands of years or longer, the origins of some of them are still unknown,” says Professor Yoshiaki Tsuda, the main author of the study. “This includes Japan’s northernmost island populations of the native species F. crenata.”

The research group investigated populations of F. crenata on Okushiri Island in the Japan Sea, which is thought to have broken away from the mainland in the Middle Pleistocene (the Ice Age, which occurred 2.58 million to 11,700 years ago), and remained separate ever since. The northward spread of this species began on the mainland approximately 6,000 years ago, after the last glacial maximum (LGM). The researchers studied the genetics of the island’s populations and those of nearby regions, and found that the island’s populations had high genetic diversity, and may not have arisen from a single colonization event.

The Okushiri Island populations had a comparable number of private alleles (genetic sequences that are present in a single population and essentially absent in other populations) to the populations studied on nearby Hokkaido, which points to the existence of relict populations on Okushiri Island. A relict is a population of organisms that was more widespread or more diverse in the past in a restricted area.

Taken together with palaeoecological and vegetation studies, as well as the island’s geology, these results indicate that F. crenata persisted in cryptic refugia (places where climatically sensitive species can survive regardless of incompatibility with the regional climate) on the island.

“Our evidence indicates that populations of this species already existed on Okushiri Island prior to the LGM, and persisted there for longer than previously thought,” explains Professor Tsuda. The results of this study contribute to a growing body of evidence that island plant populations are more genetically diverse than previously estimated, which has implications for research and management of island species conservation, and the study of gene flow between island and mainland populations.

###
This study was supported by JSPS KAKENHI (JP17K07852 and JP20K06152) and Core-to-Core Program (Asia-Africa Science Platforms: JPJSCCB20220007) from the Japan Society for the Promotion of Science and the 27th Pro Natura Fund Grant Program from the Pro Natura Foundation Japan.
 

Original Paper

The article, “Possible northern persistence of Siebold’s beech, Fagus crenata, at its northernmost distribution limit on an island in Japan Sea: Okushiri Island, Hokkaido,” was published in Frontiers in Plant Science at DOI: 10.3389/fpls.2022.990927

Correspondence

Associate Professor TSUDA Yoshiaki
Faculty of Life and Environmental Sciences, University of Tsukuba

Related Link

Faculty of Life and Environmental Sciences
Sugadaira Research Station, Mountain Science Center

 



Journal

Frontiers in Plant Science

DOI

10.3389/fpls.2022.990927

Article Title

Possible northern persistence of Siebold’s beech, Fagus crenata, at its northernmost distribution limit on an island in Japan Sea: Okushiri Island, Hokkaido

Article Publication Date

15-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Ferroptosis Links to Acute Kidney Disease Genes

Ferroptosis Links to Acute Kidney Disease Genes

August 28, 2025
Red Beet Gene Boosts Tuber Growth and Disease Resistance

Red Beet Gene Boosts Tuber Growth and Disease Resistance

August 28, 2025

VHL Inhibits Angiogenesis via HIF-1a in Macrophages

August 28, 2025

Trainer Insights on Canine Aggression and Behavior Solutions

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Challenges in AI-Driven Virtual Cells for Cancer Research

Scientists Develop Ureter Tissue from Stem Cells, Advancing the Future of Kidney Transplants

Advancing Organ Procurement: Normothermic Regional Perfusion Trends

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.