• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Extraordinary modulation of light polarization with dark plasmons in magnetoplasmonic nanocavities

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Alberto López-Ortega, Mario Zapata-Herrera, Nicolò Maccaferri, Matteo Pancaldi, Mikel Garcia, Andrey Chuvilin, and Paolo Vavassori

Nanophotonics uses light polarization as an information carrier in optical communications, sensing, and imaging. Likewise, the state of polarization of light plays a key role in the photonic transfer of quantum information. In this framework, optical nanodevices enabling dynamic manipulation of light polarization at the nanoscale are key components for future nanophotonic applications.

Magnetic materials exhibit the so-called magneto-optical (MO) activity, arising from spin-orbit coupling of electrons, which results in a weak magnetic-field-induced intensity and polarization modulation (in the order of mrads) of reflected and transmitted light.

Magneto-plasmonics explores nanostructures and metamaterials that combine the strong local enhancements of electromagnetic fields produced by localized plasmon excitations, i.e., collective oscillations of the quasi-free electrons, with the inherent MO activity of the magnetic constituent to enhance the otherwise weak magnetic-field-induced polarization modulation.

Up to now, most studies on magneto-plasmonics focused on the excitation of bright (i.e. radiant) localized dipolar plasmonic resonances, known as LPRs, to amplify the MO response. Indeed, dimeric and multilayered hybrid noble/ferromagnetic metals structures as well as purely ferromagnetic nanoantennae have demonstrated the possibility to control and amplify the MO properties via plasmonic excitations. For instance, considering the archetypical case of a circular disk-like magneto-plasmonic nanoantenna, incident radiation of proper wavelength excites an LPR (Po in the figure). When the nanoantenna is “activated” by a magnetic-field (H), a second LPR is induced by the inherent MO activity (PMO in the figure.). This MO-induced LPR (or MOLPR) is driven by the LPR in a direction orthogonal to both H and the LPR. The ratio between the MOLPR and the LPR corresponds to the ratio between the response of orthogonal radiating electric dipoles that determine the magnetic-field induced polarization change of re-emitted light4. However, the generation of a large MO-induced electric dipole associated to the MOLPR results from a parallel enhancement of the electric dipole associated to the LPR. The simultaneous excitation of the LPR, radiating light with the incident polarization, and MOLPR, radiating light with a polarization orthogonal to the incident radiation, limits the maximum achievable enhancement of magnetic-field activated change in polarization of reflected and transmitted light. Due to this limitation of the MO enhancement exploiting bright dipolar resonances, amplifications up to about only 1-order of magnitude of the MO response have been observed experimentally, which are not enough for practical applications of magneto-plasmonics to active nanophotonics and flat-optics.

In a new paper published in Light Science & Application, an international team lead by the Nanoscience Cooperative Research Center, CIC Nanogune, Spain, had proposed and demonstrated a strategy to overcome the aforementioned limitation based on the excitation of hybrid high order multi-polar dark modes as a viable and powerful mean to amplify the magneto-optical activity of magneto-plasmonic nanoantennas and achieve an unprecedented active control of the light polarization under a magnetic field. The authors had designed a symmetry broken non-concentric magneto-plasmonic-disk/plasmonic-ring nanostructures in order to enable the free-space light excitation of multipolar dark modes in the plasmonic-ring as well as their hybridization with the dipolar plasmonic resonance of the magneto-plasmonic disk, leading to a hybrid multipolar mode.

The large amplification of the MO response of our nanocavity is the result of a strongly enhanced radiant MOLPR, which is driven by the low-radiant hybrid multipolar resonance instead of a bright LPR. In this way the amplification of the radiated light from the strongly amplified MO response is achieved avoiding a simultaneous large enhancement of radiated light with the incident polarization.

###

Media Contact
Paolo Vavassori
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-s41377-020-0285-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Antenna Tuning via Advanced Simulations and Predictors

Biologic Treatments: Adherence Insights for Palmoplantar Pustulosis

Nurses’ Emotional Challenges in Surgical Patient Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.