• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Extinction of Alpine plants may remain undetectable for a long time

Bioengineer by Bioengineer
May 6, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo: ©Stefan Dullinger

For alpine plant species, climate change presents a special challenge: To escape increased greenhouse warming, the species have to move to a higher-altitude habitat. Due to the pyramidal structure of mountains, however, little surface area is available for this endeavor. To estimate the extinction risk of these plants, scientists have previously resorted to static models that insufficiently mapped the dynamic responses of flora to climate change.

More reliable predictions

Now, the team of Frédéric Guillaume of the Department of Evolutionary Biology and Environmental Sciences of the University of Zurich, in cooperation with research groups from Grenoble and Vienna, has developed a new model that takes eco-evolutionary mechanisms into consideration, therefore permitting more reliable predictions. The researchers have applied their model to four alpine plant species and used supercomputers to simulate the dispersal and adaptation of these species under three possible climate scenarios up to the year 2090.

The more favorable climate scenarios that assume a warming by one degree show that the plant populations recover again if the warming slows after 2090. "If climate change continues to develop without restraint, however," Guillaume says," the plants will have a big problem." A problem that may remain undetectable under superficial observation and become obvious only when examining the situation more deeply.

Persisting in unfavorable habitats

This problem arises because the longevity of these alpine plants favors a persistence in the habitats they currently occupy. At the same time, however, fewer and fewer young plants are gaining a foothold. According to an article recently published by the researchers, "longevity prevents a renewal of the populations." As a result, the populations are noticeably maladapted to their changing environment – and they are starting to thin out. "The population numbers of these plants are dropping faster than the plants can adapt to the new conditions or spread to more favorable grounds," Frédéric Guillaume says.

Extinction debt increasing

As a whole, the simulations performed have demonstrated that the adaptability of the plants cannot keep up with the fast climate changes. The circumstance that older individuals persist in a worsening environment, hides the fact that an extinction debt is slowly developing. The researchers have therefore concluded that not only the dispersal of the alpine plant species, but also the local population densities, must be correctly measured in order to determine this invisible extinction debt.

###

Literature:

Olivier Cotto, Johannes Wessely, Damien Georges, Günther Klonner, Max Schmid, Stefan Dullinger, Wilfried Thuiller, and Frédéric Guillaume. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nature Communications, May 5, 2017. DOI: 10.1038/ncomms15399

Contact:

Prof. Frédéric Guillaume
Department of Evolutionary Biology and Environmental Sciences
University of Zurich
Phone +41 44 635 66 23
E-mail: [email protected]

Media Relations
University of Zurich
Phone +41 44 634 44 67
E-Mail: [email protected]

Media Contact

Frédéric Guillaume
[email protected]
41-446-356-623
@uzh_news

http://www.uzh.ch

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Linkage: Connect DNA Regulatory Peaks to Genes

October 7, 2025
blank

Understanding Cassava Mosaic Disease in Burkina Faso

October 7, 2025

Robotic vs. Laparoscopic Splenectomy in Kids: Outcomes Reviewed

October 7, 2025

Restraint Practices in Inpatient Medical and Psychiatric Units

October 7, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    948 shares
    Share 379 Tweet 237
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Linkage: Connect DNA Regulatory Peaks to Genes

Understanding Cassava Mosaic Disease in Burkina Faso

Robotic vs. Laparoscopic Splenectomy in Kids: Outcomes Reviewed

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.