• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Exploring the structure and properties of new graphene-like polymers

Bioengineer by Bioengineer
November 2, 2018
in Science News
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists from Siberian Federal University (SibFU) together with foreign colleagues described the structural and physical properties of a group of two-dimensional materials based on polycyclic molecules called circulenes. The possibility of flexible design and variable properties of these materials make them suitable for nanoelectronics. The results are published in the Journal of Physical Chemistry C.

Circulenes are organic molecules that consist of several hydrocarbon cycles forming a flower-like structure. Their high stability, symmetricity, and optical properties make them of special interest for nanoelectronics especially for solar cells and organic LEDs. The most stable and most studied tetraoxa[8]circulene molecule could be potentially polymerized into graphene-like nanoribbons and sheets. The authors have published the results of simulations proving this possibility. They also described properties and structure of the proposed materials.

"Having only one building block – a tetraoxa[8]circulene molecule – one can create a material with properties similar to those of silicon (a semiconductor traditionally used in electronics) or graphene (a semimetal) depending on the synthesis parameters. However, the proposed materials have some advantages. The charge carrier mobility is about 10 times higher compared to silicon, therefore, one could expect higher conductivity," says the main author of the study Artem Kuklin, research associate at the department of theoretical physics of Siberian Federal University.

Having the equilibrium geometries and tested their stability, the scientists discovered several stable tetraoxa[8]circulene-based polymers. The difference between them lied in the type of coupling between the molecules resulting in different properties. The polymers demonstrate high charge carrier mobility. This property was analyzed by fitting of energy zones near bandgap – a parameter represented by separation of empty and occupied electronic states. The mechanical properties exhibit that the new materials 1.5-3 times more stretchable than graphene. The authors also emphasized existence of topological states in one of the polymers caused by spin-orbit coupling, which is not typical for light elements-based materials. The materials possessed such kind of properties are insulators in the bulk but can conduct electricity on the surface (edges).

"The proposed nanostructures possess useful properties and may be used in various fields, from the production of ionic sieves to elements of nanoelectronic devices. Further we plan to develop this topic and modify our compounds with metal adatoms to study their magnetic and catalytic properties. We would also like to find a research group that could synthesize these materials," concludes Artem Kuklin.

###

The work was carried out together with scientists from Kyungpook National University (South Korea), KTH Royal Institute of Technology in Stockholm (Sweden), Bohdan Khmelnytsky National University of Cherkasy (Ukraine), and Uppsala University (Sweden).

Media Contact

Yaroslava Zhigalova
[email protected]
7-391-291-2733
@SibFUniversity

http://www.sfu-kras.ru/en

Share12Tweet7Share2ShareShareShare1

Related Posts

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

October 12, 2025

Microfluidic Gradients Form Stem Cell CNS Model

October 12, 2025

Evolution of Primary Autoimmune Neuropathies Explained

October 12, 2025

Starting Heart Disease Prevention in Childhood

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1221 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ERβ Provides Gender-Specific Defense Against Alzheimer’s Disease

Microfluidic Gradients Form Stem Cell CNS Model

Evolution of Primary Autoimmune Neuropathies Explained

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.