• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Exploring the relationship between fever and cancer incidence

Bioengineer by Bioengineer
August 17, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Wieslaw Kozak, Tomasz Jedrzejewski, Malgorzata Pawlikowska, Jakub Piotrowski, and Sylwia Wrotek

Recurring patterns in patient accounts suggest the existence of an inverse relationship between personal history of infectious fever and cancer risk, and these patterns are documented throughout decades of medical literature. However, evidence supporting this correlation continues to be primarily anecdotal. In "Toward Antitumor Immunity and Febrile Infections: Gamma/Delta (γδ) T Cells Hypothesis" published in The Quarterly Review of Biology, Wieslaw Kozak, Tomasz Jedrzejewski, Malgorzata Pawlikowska, Jakub Piotrowski, and Sylwia Wrotek propose a mechanistic hypothesis that focuses on the potential impact infectious fever has on a particular subset of T cells, known as gamma/delta (gd) T cells.

Drawing upon previous research and experimental data, the authors argue that repeated exposure to fever enhances the ability of gd T cells to detect cellular abnormalities and to foster inhospitable environments that destroy malignant cells. This paper is the first to acknowledge the role that gd T cells may play as participants in this inverse relationship.

Infectious fever is the defensive and adaptive reaction that occurs when an organism's immune system comes into contact with exogenous pyrogens, or pathogen-associated molecular pattern (PAMP). Upon recognition of these exogenous pyrogens, endogenous mediators–also known as endogenous pyrogens–engage the febrile system. According to previous work by Shephard et al., a febrile system is composed of all of the mechanisms responsible for facilitating a fever as well as the various systems the fever affects. Thermoregulatory mechanisms are activated, resulting in the elevation of an organism's core body temperature.

The authors further elaborate on the function of endogenous mediators, like cytokines.

"In short, endogenous mediators of fever redirect metabolic substrates and energy to the immune system during fever. This markedly enhances the frequency of a vast range of immune effectors, including lymphocytes expressing gd heterodimer receptors, which possess a potent anti-infectious and antitumor competence," the authors write.

Gamma/delta T cells possesses receptors (TCRs) comprised of gamma/delta chain heterodimer. In fact, the authors posit that the unique attributes of gd T lymphocytes–lower TCR variability, fewer gene segment rearrangements, and TCRs with older evolutionary memory–enable the cells to enact processes that aid in decreasing cancer risk, such as immune surveillance and attacking cancerous cells. Vg9Vd2 T cells are capable of responding to various types of cancer, such as carcinoma, lymphoma, prostate, myeloma, and sarcoma. Exposure to infection significantly expands the quantity of gd T cells. During infection, blood Vg9Vd2 T cells can increase in number until they constitute 60 percent of the total amount of lymphocytes.

While previous research and current cancer immunotherapy practices predominately focus on alpha/beta (ab) T cells, analysis of the interaction between fever and gd T cells may generate further inquiry into the larger impact and the clinical benefits of this relationship.

###

Media Contact

Mallory Gevaert
[email protected]
773-834-5192
@ChicagoJournals

http://www.journals.uchicago.edu

Original Source

https://www.journals.uchicago.edu/journals/qrb/pr/180816 http://dx.doi.org/10.1086/699409

Share14Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.