• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Experts identify 'tipping point' in tree disease outbreaks

Bioengineer by Bioengineer
December 18, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New models which can predict the critical point at which plant pests and diseases shift from being a localised problem to a major outbreak could help us in our fight to save the world’s woodlands.

Infectious disease outbreaks in plants are a major threat to the world’s ecosystems, agricultural crops and food trade. Currently, several fungal diseases are devastating forests world-wide and under particular threat are key UK species such as oak and ash.

Now new research led by mathematicians at Newcastle University, UK, together with the University of Leeds, has identified a way to model disease progression and predict the ‘tipping point’ of a disease, providing early warning indicators that an epidemic is imminent and action needs to be taken.

Lead author Dr Sirio Orozco-Fuentes, a physicist at Newcastle University, explains:

“Predicting and controlling disease spread is incredibly difficult because of the interaction of all the different components involved.

“It’s not just about the type of tree or the hardiness of the disease, it depends on the environment – temperature, humidity, wind speed, the types of trees planted nearby and how close they are.

“So the presence of disease doesn’t automatically lead to an outbreak. A change in the weather, for example, may kill the pest before it becomes a problem without any need for human intervention.

“What we have developed is a number of mathematical models which predict the point at which a disease shifts from a small, localised problem to an epidemic, providing us with the first early warning indicators that an outbreak is imminent.

“Ultimately, we hope this will help to slow down disease spread in the future and also help us to design more resilient forests in the future.”

Funded by Defra and Newcastle University, the project was launched in response to the current threat to our oak tree population, such as the Oak Processionary Moth, a toxic species of caterpillar which strips the trees of their leaves.

The team developed mathematical models to mimic the spread of disease under different conditions. Their findings, published in Ecological Modelling, show strikingly similar patterns of disease spread to the ones obtained through satellite images of key woodlands across the UK.

They also highlighted a ‘critical transition’ period between two phases: local confinement (the time when the disease is contained and not a threat) and an epiphytotic outbreak.

Monitoring new pockets of disease and identifying the point at which it hits this critical point would result in a more informed management system for policy makers, explains Dr Nick Parker, a senior lecturer in applied mathematics at Newcastle University and co-author on the paper.

“One of the key indicators is the species mix of the diseased woodland,” says Dr Parker.

“The homogeneous nature of today’s woodlands allows the rapid spread of pests and diseases and is where we are most likely to see an outbreak.”

###

Media Contact
Louella Houldcroft
[email protected]
44-019-120-85108
http://dx.doi.org/10.1016/j.ecolmodel.2018.11.003

Tags: AgricultureBiologyEcology/EnvironmentForestry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

How Vibrating Molecules Could Unlock New Insights in Cell Biology

October 16, 2025
blank

Dr. Ilana Kolodkin-Gal of the Shojen Institute for Synthetic Biology Awarded Prestigious BSF-NSF Research Grant

October 16, 2025

What Occurs When a Cell’s Antenna Fails?

October 16, 2025

Puppies Born to Older Fathers Exhibit Higher Rates of Gene Mutations

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1252 shares
    Share 500 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Regional Research Impact Through Community Geography

Pyrolysis Liquid from Tunisian Woods: Antifungal & Anti-Termite Insights

KAIST Creates AI Technology to Predict and Assemble Cellular Drug Responses Like LEGO Blocks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.