• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Expert comment: How studying fossilized parasites can contribute to knowledge of infectious diseases

Bioengineer by Bioengineer
November 8, 2021
in Biology
Reading Time: 3 mins read
0
Examples of parasite–host interactions preserved on marine animal host skeletons.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the last decade, John Huntley, a paleontologist and an associate professor of geological sciences at the University of Missouri, has studied the history of parasite-host interactions. These interactions can occur either outside a host’s body, such as a tick, or inside a host’s body, such as a flatworm.

Examples of parasite–host interactions preserved on marine animal host skeletons.

Credit: University of Missouri

Over the last decade, John Huntley, a paleontologist and an associate professor of geological sciences at the University of Missouri, has studied the history of parasite-host interactions. These interactions can occur either outside a host’s body, such as a tick, or inside a host’s body, such as a flatworm.

Recently, Huntley and his colleagues developed the first known database of parasite-host interactions among animals living in the ocean, including the fossilized ancestors of today’s crabs, shrimp and oysters. Their results were recently published in the journal Philosophical Transactions of the Royal Society B.

Huntley explains how studying fossilized parasites can contribute to our knowledge of infectious diseases.

How can studying fossil parasites contribute to our knowledge of infectious diseases?

We’re learning that paleontological research is more than a purely academic undertaking. Paleontologists have the privilege of studying ancient life and the environments in which these animals lived. By better understanding how parasite-host interactions have occurred in the past, we now have the primary evidence for how life has responded to a variety of calamities over hundreds of millions of years.

This insight can help us better understand the evolution of biodiversity over time, and give us greater context to modern problems such as the COVID-19 pandemic and climate change.

What insights have you developed from your recent research on how parasite-host relationships have changed over time?

The first known occurrence of parasitism among animals occurred about 520 million years ago. Since that time, the occurrence of parasitism and the percentage of individuals affected by parasites has dramatically increased. In particular, the last 65 million years have seen an intensification in parasitism. This is consistent with my earlier studies of predator-prey interactions.

In general, we’ve found the world has become a more dangerous place for animals in the oceans over the last half a billion years. There are a variety of competing, but not mutually exclusive, ideas for why this has occurred, and arguments generally center around food chain processes, and changing nutrient and habitat availability.

What can these parasite-host relationships tell us about biodiversity and the health of ecosystems throughout the history of life on Earth?

We’ve found a strong correlation between parasitism and biodiversity. At the broadest scale, parasites are more common when there are more species. This makes sense because more species can mean more chances for developing these interactions. We also compared parasitism to the rate at which species originate and go extinct and found negative relationships, which suggests parasite-host interactions flourish when higher and more stable levels of diversity are present.

Therefore, we’ve seen evidence that parasites can positively stabilize coastal ecosystems that provide food and other services to millions of people in today’s world. Even though parasites harm the individual hosts that they infest, evidence shows they make the overall ecosystem more stable because of their actions.

To arrange an interview with Huntley, please contact Eric Stann with the MU News Bureau at 573-882-3346 or [email protected].

“Phanerozoic parasitism and marine metazoan diversity: Dilution versus amplification,” was published in the Philosophical Transactions of the Royal Society B. Funding was provided by FAU Emerging Talents Initiative SS16_NAT_11, National Science Foundation CAREER EAR-1650745, the Alexander von Humboldt Stiftung Foundation, the Institute for Advanced Studies—University of Bologna, University of Missouri Faculty Research Leave and a Paleontological Society Arthur J. Boucot research grant. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.



Journal

Philosophical Transactions of the Royal Society B Biological Sciences

DOI

10.1098/rstb.2020.0366

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Phanerozoic parasitism and marine metazoan diversity: dilution versus amplification

Article Publication Date

20-Sep-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Intermediate Care’s Effects on Healthcare Outcomes

Eco-Friendly LaVO4 Nanoparticles Boost Paracetamol Detection

Biodegradable Matrix Boosts Blood Vessel Growth for Stroke Recovery

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.