• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, November 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Experience trumps youth among jumping fish

Bioengineer by Bioengineer
March 16, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Ben Perlman and Nickolay Hristov

Tiny jumping fish can leap further as they get older, new research shows.

Mangrove rivulus are capable of "tail-flip jumping" many times their body length when out of water, allowing them to escape predators and find better habitats.

Researchers from the universities of Exeter and Alabama looked at how physical traits and age affected how far the fish – found in the US, the Bahamas and Central America – could jump.

They found certain traits were linked to longer jumping among younger fish, but as they got older these effects diminished and age itself was most closely linked with jumping distance.

Of more than 200 fish examined, the longest jumper was also the oldest – a four-year-old mangrove rivulus that jumped more than twelve times its body length.

"We found that the length and position of certain bones seem to help younger fish jump further," said Dr Tom Houslay, of the Centre for Ecology and Conservation on the University of Exeter's Penryn Campus in Cornwall.

"However, these links disappear as they age, and older fish are better at jumping regardless of these physical characteristics.

"Adults probably rely less on bones because they have the musculature and neural systems to coordinate jumping, something that isn't highly developed in the young fish.

"Few studies have examined how the relationship between form and function changes across lifespan, and we were intrigued to find experience trumps all – at least if you're a mangrove rivulus."

The study found that older fish typically jump about half a body length further than younger ones, meaning they are better jumpers even when their larger size is taken into account.

Mangrove rivulus, which live in noxious crab burrow habitats, are about 2-3cm long as adults and have a number of unusual adaptations to allow them to live out of water.

They are also self-fertilizing simultaneous hermaphrodites, meaning if they find themselves with no mate they can reproduce alone by making clones.

This adaptation, unique among vertebrate life, also makes them a useful species for studying genetic differences in physical form and performance.

"The next step in this line of research is to figure out whether genetic variation underlies differences in body structure associated with jumping performance in young fish," said Joe Styga, PhD candidate at the University of Alabama and lead author of the study.

"This information may help us to determine to what extent jumping performance may evolve in the face of environmental change."

###

The paper is part of an ongoing collaboration between the universities of Exeter and Alabama, funded by Biotechnology and Biological Sciences Research Council (BBSRC).

The paper, published in the Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, is entitled: "Ontogeny of the morphology-performance axis in an amphibious fish (Kryptolebias marmoratus)."

Media Contact

Alex Morrison
[email protected]
44-013-927-24828
@uniofexeter

http://www.exeter.ac.uk

Related Journal Article

http://dx.doi.org/10.1002/jez.2150

Share12Tweet8Share2ShareShareShare2

Related Posts

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

November 16, 2025
blank

HBB Mutation Frequency in Nigerian, Zimbabwean Populations

November 16, 2025

Characterizing UGT Family: Key Role in Blueberry Development

November 16, 2025

LMNB2 Modulates p38 MAPK to Influence Esophageal Cancer

November 16, 2025
Please login to join discussion

POPULAR NEWS

  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    201 shares
    Share 80 Tweet 50
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • Neurological Impacts of COVID and MIS-C in Children

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Distinct Body Sizes: Analyzing Pig Skeletal Muscle Transcriptomes

LHAASO Sheds Light on the Origin of the Cosmic Ray “Knee” Phenomenon

Anorectal Malformation Surgery: Five-Year Outcomes in Eastern Africa

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.