• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Exciting apparatus helps atoms see the light

Bioengineer by Bioengineer
March 4, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers study unusual particles involved in quantum information processing

IMAGE

Credit: OIST


Researchers in the Light-Matter Interactions for Quantum Technologies Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) have generated Rydberg atoms – unusually large excited atoms – near nanometer-thin optical fibers. Their findings, published recently in Physical Review Research, mark progress toward a new platform for quantum information processing, which has the potential to revolutionize material and drug discoveries and provide more secure quantum communication.

Due to their extraordinary susceptibility to electric and magnetic fields, Rydberg atoms have long piqued physicists’ interests. Used in conjunction with optical nanofibers, these hyper-sensitive atoms could play an instrumental role in new types of scalable quantum devices. However, Rydberg atoms are notably difficult to control.

“The main aim of the study was to bring Rydberg atoms into proximity with the nanofibers,” said Krishnapriya Subramonian Rajasree, a PhD student at OIST and the first author of the study. “This set-up creates a new system for studying interactions between Rydberg atoms and nanofiber surfaces.”

Unusual atoms

To carry out their research, the scientists used a device called a magneto-optical trap to capture a cluster of Rubidium (Rb) atoms. They reduced the temperature of the atoms to approximately 120 microKelvin – fractions of a degree above absolute zero and ran a nanofiber through the atom cloud.

Then, the scientists excited the Rb atoms to a more energetic Rydberg state, using a 482 nm beam of light traveling through the nanofiber. These Rydberg atoms, which formed around the nanofiber surface, are greater in size than their ordinary counterparts. When the atoms’ electrons gained energy, they moved further from the atomic nucleus, creating larger atoms. This unusual size heightens the atoms’ sensitivity to their environment and to the presence of other Rydberg atoms.

Through their experiment, the scientists brought the Rydberg atoms within mere nanometers of the optical nanofiber, enabling increased interaction between the atoms and light travelling in the nanofiber. Due to their abnormal properties, the Rydberg atoms escaped the magneto-optical trap. The scientists were able to understand aspects of Rydberg atom behavior by examining how the loss of atoms depended on the power and wavelength of the light.

The ability to use light travelling in an optical nanofiber to excite and then control Rydberg atoms may help pave the way toward methods of quantum communication, while also heralding incremental progress toward quantum computing, the scientists said.

“Understanding interactions between light and Rydberg atoms is crucial,” said Dr. Jesse Everett, a post-doctoral scholar at OIST and a co-author of the study. “Harnessing these atoms could enable the secure routing of communication signals using very small amounts of light.”

Moving forward, the researchers hope to further study properties of the Rydberg atoms in conjunction with optical nanofibers. In future studies, they intend to look at Rydberg atoms that are even bigger in size, to explore the possibilities and limits of this system.

###

Media Contact
Tomomi Okubo
[email protected]

Original Source

https://www.oist.jp/news-center/news/2020/2/26/exciting-apparatus-helps-atoms-see-light

Related Journal Article

http://dx.doi.org/10.1103/PhysRevResearch.2.012038

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

August 22, 2025
Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

Greater hydrogen production, increased ammonia and fertilizer output—all achieved with reduced energy consumption

August 22, 2025

NME1 Enzyme Catalyzes Its Own Oligophosphorylation

August 22, 2025

Seamless Integration of Quantum Key Distribution with High-Speed Classical Communications in Field-Deployed Multi-Core Fibers

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Unveil Breakthrough Technique for Large-Scale Metabolite Analysis in Biological Samples

Metabolic Profiling Reveals RCC Drug Response

Electrochemical Hybrid Flow Cell Captures CO2 Directly

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.