• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Evolutionary crop research: Ego-plants give lower yield

Bioengineer by Bioengineer
October 2, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Copenhagen University

Survival of the fittest is a fundamental concept in Darwin's theory of natural selection which drives evolution.

However, when it comes to agriculture and plantbreeding, the traits which make a single plant individual a good competitor and increases its fitness as an individual is not necessarily the same characteristics that increase the total yield of a group of plants on the field.

These are the findings in a new study from Copenhagen University just published in the journal Ecology. Jacob Weiner, Professor in plant ecology, is responsible for new research within the area Evolutionary Agroecology or as it is also known, Darwinian Agriculture.

Together with a research team in China, Jacob Weiner planted 35 different wheat varieties on field plots in both monocultures (groups consisting of a single wheat variety) and polycultures (groups consisting of mixtures of all the varieties).

He explains how the results showed that competitive wheat varieties only gave mediocre yields when they were grown in groups of the same variety, as is the norm in agriculture.

On the contrary, less competitive varieties gave larger yields under the same conditions. If implemented within plant breeding these results may be used to increase agricultural production yields. Group dynamics beats individual performance Jacob Weiner explains that the results points towards the implementation of a new perspective within plant breeding.

In this perspective the concepts of group selection should be applied during the development of new plant breeds, instead of selecting based on individual fitness as it is often done within plant breeding and research.

"The crops can be compared to a sports team. If every player is rewarded for scoring the goals, the team will not score as many goals as it would, had the players cooperated. In the same way, we can't increase crop yields by selecting the most successful plant individuals for breeding," Jacob Weiner says.

One of the scientific hypotheses behind the research explains this. It is based on the fact that "selfish" individual plants – the best competitors – use a lot of resources to compete with each other and thereby have fewer resources left for producing higher yields compared to less competitive plants.

A plant breeding revolution

According to Jacob Weiner the results should lead to a shift of the general mindset within present day plant breeding.

The new principles should encourage selecting new plant breeds based on the characteristics of group selection, a phenomenon which is only rarely observed in nature.

Much plant breeding and especially genetic engineering is aimed at creating "better" plants, e.g. plants with more effective photosynthesis or that grow faster. According to evolutionary thinking, these efforts are not likely to succeed, because natural selection has been optimizing these attributes for millions of years.

"We can only better than natural selection if we try to do something natural selection will not do, such as breed unselfish plants" says Weiner.

###

Media Contact

Jacob Weiner
[email protected]
0045-35-33-28-22
@uni_copenhagen

http://www.ku.dk

Related Journal Article

http://dx.doi.org/10.1002/ecy.1934

Share14Tweet7Share2ShareShareShare1

Related Posts

blank

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
blank

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

SNARE Neofunctionalization Driven by Vacuole Retrieval

Atractylodes lancea: Restoring Cardio-Renal Function in Rats

Exploring Shigella Phage Sf14’s tRNA Contributions

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.