• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Evolution on the fast lane — 1 flounder species became 2

Bioengineer by Bioengineer
May 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: On the left: Mats Westerbom. On the right: Alf Norkko.

A research group at the University of Helsinki discovered the fastest event of speciation in any marine vertebrate when studying flounders in an international research collaboration project. This finding has an important implication on how we understand evolution in the sea.

The researchers found out the pace at which two groups of flounders in the Baltic Sea became distinct species had been extraordinarily fast, approximately 2400 generations. This is by far the fastest event of speciation in any marine vertebrate to date.

"This is possibly one of the best examples of ecological speciation, that is the process by which selection generates new species, in the marine environment because the species evolved by adapting to different ecological niches, rather than by being separated by geographic barriers for a very long time," says Paolo Momigliano, post-doctoral researcher from the Ecological Genetics Research Unit.

What makes this finding important is that in the marine environment barriers to dispersal are rarely absolute, in other words currents can move larvae around and adult fish swim around. Hence, models of speciation which can act in the absence of complete geographical isolation, such as ecological speciation, have likely played an important role in the evolution of marine biodiversity. Yet, to date, evidence of ecological speciation in the sea is scarce.

"Our study has important implications on how we understand evolution in the sea," confirms Momigliano.

There are new interesting questions for the researchers to solve, such as how are species arising, in some cases at a speed that once would have been thought to be unimaginably fast.

"The answer may lay in so called magic traits, meaning traits that are under selection which at the same time cause reproductive isolation as a byproduct. In theory, selection on such traits could play a central role in rapid speciation events. The mating strategies and reproductive traits of the two flounder species could act as magic traits," clarifies Momigliano.

As the study confirms that there are two species of flounders instead of one, how can you distinguish them from each other?

"They are morphologically nearly indistinguishable but have different spawning behaviors and adaptations. Both species winter in deeper waters and feed in shallow coastal waters in the summer. In spring, however, one species spawns pelagic eggs in deep water basins, where salinity is high enough and eggs can become neutrally buoyant. The second species spawns smaller, but tougher, eggs in shallow coastal waters. These differences have been known for some time, but only now we realize that flounders with different spawning behaviors are two species with distinct evolutionary histories," describes Momigliano.

The flounders are economically important for fishing and their numbers have declined markedly on the Finnish coast. Today, the percentage of pelagic flounders is very small on the Finnish coast, but an ongoing research suggests that in the 1970s and 1980s they made up the majority of the population. The pelagic flounders could not have spawned successfully on the Finnish coast because they require higher salinity. They were probably spawned in the south when conditions were more suitable, and transported to the Finnish coast by the currents. I.e. the Finnish coast was a sink population for the southern type of flounders, much as was the case for cods during the same period. Today we almost exclusively get the demersal species.

###

Media Contact

Paolo Momigliano
[email protected]
358-040-777-6419
@helsinkiuni

http://www.helsinki.fi/university/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Nurses and Patients’ Views on ACS Treatment Adherence

September 28, 2025

Streptococcus anginosus Found Across Female Urogenital Sites

September 28, 2025

miR-423-5p Modulates Oncogenic Metabolism in HCC

September 28, 2025

Combination Inhaler Cuts Childhood Asthma Attacks by Nearly 50%

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    83 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses and Patients’ Views on ACS Treatment Adherence

Streptococcus anginosus Found Across Female Urogenital Sites

miR-423-5p Modulates Oncogenic Metabolism in HCC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.