• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Even after treatment, brains of anorexia nervosa patients not fully recovered

Bioengineer by Bioengineer
March 1, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

AURORA, Colo. (March 1, 2017) – Even after weeks of treatment and considerable weight gain, the brains of adolescent patients with anorexia nervosa remain altered, putting them at risk for possible relapse, according to researchers at the University of Colorado Anschutz Medical Campus.

The study, published last week in the American Journal of Psychiatry, examined 21 female adolescents before and after treatment for anorexia and found that their brains still had an elevated reward system compared to 21 participants without the eating disorder.

"That means they are not cured," said Guido Frank, MD, senior author of the study and associate professor of psychiatry and neuroscience at the University of Colorado School of Medicine. "This disease fundamentally changes the brain response to stimuli in our environment. The brain has to normalize and that takes time."

Brain scans of anorexia nervosa patients have implicated central reward circuits that govern appetite and food intake in the disease. This study showed that the reward system was elevated when the patients were underweight and remained so once weight was restored.

The neurotransmitter dopamine might be the key, researchers said.

Dopamine mediates reward learning and is suspected of playing a major role in the pathology of anorexia nervosa. Animal studies have shown that food restriction or weight loss enhances dopamine response to rewards.

With that in mind, Frank, an expert in eating disorders, and his colleagues wanted to see if this heightened brain activity would normalize once the patient regained weight. Study participants, adolescent girls who were between 15 and 16 years old, underwent a series of reward-learning taste tests while their brains were being scanned.

The results showed that reward responses were higher in adolescents with anorexia nervosa than in those without it. This normalized somewhat after weight gain but still remained elevated.

At the same time, the study showed that those with anorexia had widespread changes to parts of the brain like the insula, which processes taste along with a number of other functions including body self-awareness.

The more severely altered the brain, the harder it was to treat the illness, or in other words, the more severely altered the brain, the more difficult it was for the patients to gain weight in treatment.

"Generalized sensitization of brain reward responsiveness may last long into recovery," the study said. "Whether individuals with anorexia nervosa have a genetic predisposition for such sensitization requires further study."

Frank said more studies are also needed to determine if the continued elevated brain response is due to a heightened dopamine reaction to starvation and whether it signals a severe form of anorexia among adolescents that is more resistant to treatment.

In either case, Frank said the biological markers discovered here could be used to help determine the likelihood of treatment success. They could also point the way toward using drugs that target the dopamine reward system.

"Anorexia nervosa is hard to treat. It is the third most common chronic illness among teenage girls with a mortality rate 12 times higher than the death rate for all causes of death for females 15-24 years old," Frank said. "But with studies like this we are learning more and more about what is actually happening in the brain. And if we understand the system, we can develop better strategies to treat the disease."

###

The study co-authors include Marisa DeGuzman, BA, BS, Megan Shott, BS, Tony Yang, MD, PhD and Justin Riederer, BS.

Media Contact

david kelly
[email protected]
303-724-1525
@CUAnschutz

http://www.ucdenver.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Hydrocortisone Use in Extremely Preterm Infants

September 20, 2025

Standardized Extract Boosts Immunity in Chemotherapy Mice

September 20, 2025

Reticulocalbin-1: Biomarker and Therapy Target in RCC

September 20, 2025

Ag-Doped MnO2 Sea Urchin Structure Boosts Zinc Batteries

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocortisone Use in Extremely Preterm Infants

Standardized Extract Boosts Immunity in Chemotherapy Mice

Reticulocalbin-1: Biomarker and Therapy Target in RCC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.