• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

EU funds research on biofuels and infectious diseases

Bioengineer by Bioengineer
April 13, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Environmentally friendly fuels

Volker Müller is one of the leading microbiologists worldwide in the field of microbial metabolism of microbes that grow in the absence of oxygen. His project centres on the production of biofuels with the help of bacteria that can use carbon dioxide as feedstock. Such fuels would have the advantage of making us independent of fossil fuels and reducing greenhouse gas emissions. For many years, Professor Müller's research group at the Institute of Molecular Biosciences of Goethe University Frankfurt has been investigating a specific group of bacteria that convert carbon dioxide (CO2) and hydrogen (H2) or carbon monoxide (CO) to acetic acid in a fermentation process. The bacteria require neither light nor oxygen to do so.

What are known as acetogenic bacteria are already used on an industrial scale for exhaust gas fermentation American company LanzaTech. The aim here is primarily to render the exhaust gas harmless. Müller is already coordinating a pan-European consortium targeted at the optimization of gas fermentation. In the research project funded by the ERC, Müller wants now to further utilize the potential of Acetobacterium woodii. The bacterium can also process methanol or formic acid – both are cheap raw materials for biotechnology applications. Müller and his research group want to solve and then alter the metabolic pathways. The goal is to genetically modify acetogenic bacteria in such a way that they can produce environmentally friendly fuels and base chemicals on a large scale from various source materials.

New strategies to combat infectious diseases

It is the second time already that Ivan Dikic, who was born in Croatia, has been awarded an ERC Advanced Investigator Grant. He is one of the international pioneers in the area of ubiquitin research. Ubiquitin regulates many cellular processes; amongst others it controls the degradation of superfluous or harmful proteins and the repair of defective DNA, transmits signals within the cell and triggers cell death if damage cannot be controlled any more. In addition, ubiquitin has been recognized as being very important for fighting bacterial infections.

In his new ERC project, Dikic is investigating how bacteria manipulate the ubiquitin system of their host organism to their own advantage. In the focus are infections with Salmonella, Shigella and Legionella. Dikic's research group at the Institute of Biochemistry II is e.g. searching for new signaling pathways which are activated by bacterial enzymes. They are employing high-resolution microscopy methods and cutting-edge mass spectrometry that allows the quantitative assessment of all cellular proteins and their ubiquitin modifications. By this approach, the cell biologists want to elucidate how various bacterial enzymes influence the severity and course of an infection and why serious secondary tissue damage sometimes occurs despite successful treatment with antibiotics. Such damage cannot only be caused by bacterial toxins, but also by signalling substances secreted by the host's own immune cells following an infection. This secondary damage can be life-threatening.

In a second step, the researchers in Dikic's group want to search for substances that actively interfere with this process and in particular limit tissue damage. To this purpose, Dikic is working together with partners in the pharmaceutical sector. The ultimate goal is to fully understand the role of the ubiquitin system in bacterial infections and to seize the newly obtained knowledge for developing new strategies for combating infectious diseases.

###

Pictures can be downloaded under the following link: http://www.uni-frankfurt.de/66113784

Further information: Professor Dr. Volker Müller, Institute of Molecular Biosciences, Faculty of Biological Sciences, Riedberg Campus, Tel.: +49(0)69-798-29507; -29508, Email: [email protected].

Professor Dr. Ivan Dikic; Media contact: Dr. Kerstin Koch, Institute of Biochemistry II, Faculty of Medicine, Frankfurt University Hospital, Tel.: +49(0)69-6301-84250, Email: [email protected].

Media Contact

Prof. Dr. Volker Müller
[email protected]
@goetheuni

http://www.uni-frankfurt.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Low and High-Tech Tools for Activity Schedules

November 1, 2025

Switching MS Patients: Anti-CD20 to Cladribine Tablets

November 1, 2025

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

November 1, 2025

Cloud-Connected Tubeless Insulin Pump Improves Diabetes Management

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Low and High-Tech Tools for Activity Schedules

Switching MS Patients: Anti-CD20 to Cladribine Tablets

Revolutionary ARDitox Uncovers Cross-Reactive TCR Epitopes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.