• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ethereal color variant of mysterious plant is actually a new species

Bioengineer by Bioengineer
December 27, 2022
in Biology
Reading Time: 6 mins read
0
Figure 1. Morphological comparison of the aboveground parts of M. kirishimense and M. humile
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Green leaves and photosynthesis were once considered essential characteristics of plants. However, some plants have stopped performing photosynthesis and take the nutrients they need from other organisms instead. One such mycoheterotrophic plant is ghostly-looking Monotropastrum humile that is widely found across East and Southeast Asia. It often grows in woodlands where there is little sunlight, obtaining the nutrients it needs by feeding off the hyphae of fungi. Despite its wide distribution, it was previously believed that only one species of this plant existed in the world. However, Professor SUETSUGU Kenji and colleagues have discovered that a variant found in Japan is actually a new species, shaking up our understanding of this unusual-looking genus of plants.

It has rosy pink petals and stems resembling milk glass, giving it a beautiful, otherworldly appearance. As it was first found around Kirishima in Kagoshima Prefecture, Japan, the new species has been named Monotropastrum kirishimense.

Originally, this new species was tentatively treated as a color variant of M. humile, known as M. humile f. roseum. Thus began an extensive and multifaceted 20-year study to determine how exactly these plants differed. Specimens were collected from throughout Japan and Taiwan, as well as Vietnam.

Results of various analyses revealed morphological differences (Figures 1-3), including the following; M. kirishimense flowers and ovaries are more rounded than those of M. humile, and its rootball is more obscured by the surrounding soil (in contrast to M. humile’s protruding root tips). M. kirishimense individuals are shorter above ground (under 5cm) and longer below ground (over 10cm). The flowering season is different too; M. humile flowers bloom approximately 40 days earlier than M. kirishimense. As the two plant species have the same primary pollinator (the bumblebee Bombus diversus), this difference in flowering times can reduce heterospecific pollen deposition, helping to ensure conspecific mating, and thereby preventing them from producing hybrids.

There are several other possible reasons why M. kirishimense and M. humile may have evolved into separate species. One possibility is that they have become specialized in feeding on different fungi, which has led to reproductive isolation, or the inability to produce offspring together. This process is known as resource partitioning and is one of the major ways that species can evolve from a common ancestor. Genetic analysis of mycobionts revealed that M. kirishimense has a consistent, specialized association with a particular lineage of fungi, whereas M. humile is associated with different lineages (Figure 4). Therefore, this study suggests that M. kirishimense may have evolved into a new species by relying on a specific type of fungus. In fact, the phylogenetic tree (a ‘family tree’ of the evolutionary history of a group of organisms) of the plants themselves shows that the genetic characteristics of M. kirishimense and M. humile can be separated into two clades (Figure 5). Based on the researchers’ analysis of various characteristics, it has been revealed that M. kirishimense is distinct from M. humile in terms of its appearance, flowering patterns, evolutionary history, and ecological relationships. Therefore, the researchers concluded that it should be recognized as an independent species.

Overall, the research group not only revealed that M. kirishimense is a distinct species but also deepened understanding of plants in the Monotropastrum genus. Mycohetrotrophic plants are very vulnerable to extinction as they rely on specific ecosystems to survive and are usually found in old-growth forests. The newly recognized species, M. kirishimense, is rare and presumably endangered. Now that it has been identified as a new species, conservation efforts can be made to protect it. This study emphasizes the importance of combining various analysis methods, called integrative taxonomy, to fully understand and protect biodiversity. This work was conducted by a multi-institutional research group, including Professor Suetsugu (Graduate School of Science, Kobe University), Professor SUYAMA Yoshihisa (Graduate School of Agricultural Science, Tohoku University), and Dr. Tian-Chuan Hsu (Taiwan Forestry Research Institute). The paper was published online in Journal of Plant Research on November 30, 2022.

Figure 1. Morphological comparison of the aboveground parts of M. kirishimense and M. humile

Credit: Suetsugu, K., Hirota, S.K., Hsu, TC. et al. Monotropastrum kirishimense (Ericaceae), a new mycoheterotrophic plant from Japan based on multifaceted evidence. J Plant Res (2022).

Green leaves and photosynthesis were once considered essential characteristics of plants. However, some plants have stopped performing photosynthesis and take the nutrients they need from other organisms instead. One such mycoheterotrophic plant is ghostly-looking Monotropastrum humile that is widely found across East and Southeast Asia. It often grows in woodlands where there is little sunlight, obtaining the nutrients it needs by feeding off the hyphae of fungi. Despite its wide distribution, it was previously believed that only one species of this plant existed in the world. However, Professor SUETSUGU Kenji and colleagues have discovered that a variant found in Japan is actually a new species, shaking up our understanding of this unusual-looking genus of plants.

It has rosy pink petals and stems resembling milk glass, giving it a beautiful, otherworldly appearance. As it was first found around Kirishima in Kagoshima Prefecture, Japan, the new species has been named Monotropastrum kirishimense.

Originally, this new species was tentatively treated as a color variant of M. humile, known as M. humile f. roseum. Thus began an extensive and multifaceted 20-year study to determine how exactly these plants differed. Specimens were collected from throughout Japan and Taiwan, as well as Vietnam.

Results of various analyses revealed morphological differences (Figures 1-3), including the following; M. kirishimense flowers and ovaries are more rounded than those of M. humile, and its rootball is more obscured by the surrounding soil (in contrast to M. humile’s protruding root tips). M. kirishimense individuals are shorter above ground (under 5cm) and longer below ground (over 10cm). The flowering season is different too; M. humile flowers bloom approximately 40 days earlier than M. kirishimense. As the two plant species have the same primary pollinator (the bumblebee Bombus diversus), this difference in flowering times can reduce heterospecific pollen deposition, helping to ensure conspecific mating, and thereby preventing them from producing hybrids.

There are several other possible reasons why M. kirishimense and M. humile may have evolved into separate species. One possibility is that they have become specialized in feeding on different fungi, which has led to reproductive isolation, or the inability to produce offspring together. This process is known as resource partitioning and is one of the major ways that species can evolve from a common ancestor. Genetic analysis of mycobionts revealed that M. kirishimense has a consistent, specialized association with a particular lineage of fungi, whereas M. humile is associated with different lineages (Figure 4). Therefore, this study suggests that M. kirishimense may have evolved into a new species by relying on a specific type of fungus. In fact, the phylogenetic tree (a ‘family tree’ of the evolutionary history of a group of organisms) of the plants themselves shows that the genetic characteristics of M. kirishimense and M. humile can be separated into two clades (Figure 5). Based on the researchers’ analysis of various characteristics, it has been revealed that M. kirishimense is distinct from M. humile in terms of its appearance, flowering patterns, evolutionary history, and ecological relationships. Therefore, the researchers concluded that it should be recognized as an independent species.

Overall, the research group not only revealed that M. kirishimense is a distinct species but also deepened understanding of plants in the Monotropastrum genus. Mycohetrotrophic plants are very vulnerable to extinction as they rely on specific ecosystems to survive and are usually found in old-growth forests. The newly recognized species, M. kirishimense, is rare and presumably endangered. Now that it has been identified as a new species, conservation efforts can be made to protect it. This study emphasizes the importance of combining various analysis methods, called integrative taxonomy, to fully understand and protect biodiversity. This work was conducted by a multi-institutional research group, including Professor Suetsugu (Graduate School of Science, Kobe University), Professor SUYAMA Yoshihisa (Graduate School of Agricultural Science, Tohoku University), and Dr. Tian-Chuan Hsu (Taiwan Forestry Research Institute). The paper was published online in Journal of Plant Research on November 30, 2022.



Journal

Journal of Plant Research

DOI

10.1007/s10265-022-01422-8

Method of Research

Survey

Subject of Research

Not applicable

Article Title

Monotropastrum kirishimense (Ericaceae), a new mycoheterotrophic plant from Japan based on multifaceted evidence

Article Publication Date

29-Nov-2022

COI Statement

The authors declare no conflict of interest.

Share13Tweet8Share2ShareShareShare2

Related Posts

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

Self‑Regulated Bilateral Anchoring Creates Efficient Charge Transport Pathways for High‑Performance Rigid and Flexible Perovskite Solar Cells

September 23, 2025
Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

Lysosomal Acidity: Striking the Balance Between Pathogen Elimination and Tissue Protection

September 23, 2025

Unveiling Magnolia’s Role in Combating Metabolic Syndrome

September 23, 2025

Forecasting Cell Population Evolution Using a New Scaling Law

September 23, 2025

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JMIR Publications and Iowa State University Join Forces to Offer Unlimited Open Access Publishing

How Cell Cycle Stages Influence Aging Cells’ Response to Senolytic Drugs

HKU Researchers and Collaborators Capture First “Heartbeat” of Newborn Neutron Star in Distant Cosmic Explosion

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.