• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Estrogen-mimicking compounds in foods may reduce effectiveness of breast cancer treatment

Bioengineer by Bioengineer
January 11, 2018
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

LA JOLLA, CA – Jan. 11, 2018 – Scientists from The Scripps Research Institute (TSRI) have discovered that two estrogen-mimicking compounds found in many foods appear to potently reverse the effects of palbociclib/letrozole, a popular drug combination for treating breast cancer.

The study, published today in the journal Cell Chemical Biology, suggests that exposure to chemical compounds called xenoestrogens may significantly reduce the effectiveness of anti-estrogen treatments for cancer.

"Breast cancer patients taking palbociclib/letrozole should consider limiting their exposure to foods that contain xenoestrogens," says Gary Siuzdak, PhD, the study's senior author and senior director of TSRI's Scripps Center for Metabolomics.

The palbociclib/letrozole combination therapy was approved by the U.S. Food and Drug Administration in 2015 after a clinical trial showed it doubled the progression-free survival time in postmenopausal women with estrogen receptor (ER) positive, metastatic breast cancer. Letrozole blocks the production of estrogen, thus reducing the growth-promoting stimulation of ERs on breast cancer cells. Palbociclib blocks a different signaling pathway to impede cell division. The combination is now one of the standard therapies for ER-positive breast cancers.

Siuzdak and colleagues, including first and lead author Benedikt Warth, PhD, then a visiting Erwin-Schrödinger Fellow in the Siuzdak Lab, used advanced metabolomics technology to analyze the effects of palbociclib/letrozole on breast cancer cells. Metabolomics studies detail cells' metabolomes–populations of metabolites, the small-molecule end products of cellular processes.

"By profiling cell metabolomes with and without drug treatment we can get very useful information, for example about the biological pathways perturbed by the drug," says Siuzdak, a professor of chemistry, molecular and computational biology.

Their analysis revealed that neither palbociclib alone nor letrozole alone had a strong effect on metabolites in an ER-positive breast cancer cell line. However, the combination had a strikingly large impact. "The combination had a much more pronounced effect on cell-growth-related metabolites, which is consistent with the clinical trial results," Warth says.

Cancer researchers are increasingly concerned that xenoestrogens in food and water may enhance the growth of estrogen-fueled cancers, and may also hamper the effectiveness of anti-estrogen drugs such as letrozole. TSRI scientists therefore examined breast cancer cells treated with palbociclib/letrozole to see how their metabolite populations changed when they were also exposed to two common dietary xenoestrogens: zearalenone and genistein.

Zearalenone is produced by fungi that colonize maize, barley, wheat and other grains. It has been linked to birth defects and abnormal sexual development in pigs and other livestock, and is suspected of having caused an outbreak of early breast development among girls in Puerto Rico in the 1970s. Genistein is produced in certain plants including soybeans and is often highly concentrated in phytoestrogen-rich food supplements.

Even using very low doses, similar to typical dietary exposures, the researchers found that both model xenoestrogens largely reversed the metabolomic impact of the cancer drug combination. "This included many key metabolites," says Siuzdak.

Under the influence of either xenoestrogen, the breast cancer cells also resumed proliferating at a rate comparable to that seen in the absence of drug treatment.

"It's intriguing that even a low, background-level exposure to these xenoestrogens was enough to impact the effect of the therapy to this degree," says Warth, who is now an assistant professor at the University of Vienna's Department of Food Chemistry & Toxicology.

The results indicate that these dietary xenoestrogens do have the potential to affect cancer therapy outcomes–and genistein and zearalenone are just two of the many xenoestrogens commonly found in the human diet. "There's a high likelihood that other xenoestrogens would counteract the therapy in a similar way," Siuzdak says.

The impact of xenoestrogens on health and on hormonally-targeted therapies is nevertheless an understudied, underfunded area of research, the researchers emphasized.

"We generally know very little about the interactions of bioactive compounds we are exposed to through our food or the environment with drug treatments," Warth says. "So, in this field there are probably a lot of clinically relevant discoveries yet to be made."

"What I find intriguing is that metabolomics can be used to identify active metabolites that are therapeutically beneficial or, as in this case, exogenous fungal and plant metabolites that are detrimental," Siuzdak says. "Clearly, metabolites can have a significant impact in modulating therapeutics."

###

Other co-authors of the study, "Metabolomics reveals that dietary xenoestrogens alter cellular metabolism induced by palbociclib/letrozole combination cancer therapy," were Philipp Raffeiner, Ana Granados, Tao Huan, Mingliang Fang, Erica M. Forsberg, and H. Paul Benton, all of The Scripps Research Institute at the time of the study; as well as Caroline H. Johnson at Yale University and Laura Goetz of the Scripps Clinic Medical Group.

Funding for the research came from the Austrian Science Fund (Erwin-Schrödinger fellowship awarded to Benedikt Warth), the George E. Hewitt Foundation for Medical Research and the National Institutes of Health (grants R01 GMH4368 and PO1 A1043376-02S1).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. In October 2016, TSRI announced a strategic affiliation with the California Institute for Biomedical Research (Calibr), representing a renewed commitment to the discovery and development of new medicines to address unmet medical needs. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.