• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Essential virulence proteins of corn smut discovered

Bioengineer by Bioengineer
May 7, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Plant pathogen needs membrane-bound protein complex to be virulent

IMAGE

Credit: MPI f. Terrestrial Microbiology/ Geisel

To infect its host plant maize, the fungal parasite Ustilago maydis uses a complex of seven proteins. Numerous findings reveal an essential role of the complex in causing disease and suggest a widespread occurence in fungal plant pathogens.

Each year, fungal plant pathogens such as rusts, rice blast and mildews destroy huge amounts of cereal crops that could feed millions of people. Many of these fungi are biotrophic pathogens: Instead of killing their host plants, they manipulate host cells to assure that these sustain fungal growth. Among these pathogens, the corn smut fungus Ustilago maydis has emerged as a model for basic research on biotrophic fungi.

During the infection, U. maydis releases an entire cocktail of so-called effectors which function either in the interaction zone between fungus and host or are delivered to plant cells. Effector proteins suppress plant immunity, alter plant biosynthesis pathways and re-initiate cell division in leaf tissue, leading to prominent tumor-like structures from which the fungus spreads its spores. At present, the mechanism how effectors of plant-pathogenic fungi end up in plant cells remains a mystery.

Over many years, researchers around Regine Kahmann at the Max Planck Institute for Terrestrial Microbiology have worked on elucidating the molecular function of effectors. In the present study they have identified five fungal effectors plus two transmembrane proteins, which form a stable protein complex. If only one of these seven proteins is missing, the infection process stops entirely. Such a strong contribution to virulence is highly unusual for effectors which individually usually have only a modest contribution to virulence. Mutants lacking complex members fail to downregulate host immunity, suggesting an involvement of the complex in effector delivery. Localization experiments in part conducted with collaboration partners in the US and at the Philipps-Universität in Marburg revealed that complex proteins reside in structures extending from the fungus into host cells.

Essential for infection

These and other findings together with the observation that the expression of the complex is co-regulated with the infection process point towards a central, if not universal role of the protein complex. “We consider it likely that the effector complex in fact acts as a transmembrane structure that helps pathogens to deliver effector proteins into host cells”, says Regine Kahmann. “Such devices are well known from bacteria, but not from fungi so far.”

However, direct proof is tough to come by. “This would require to show that certain effectors fail to enter the plant cell when the complex is missing, something we cannot really prove at the moment since mutants lacking the complex are immediately attacked by the plant immune system and die after entering the plant” says Nicole Ludwig, lead author of the study that was published in the journal Nature Microbiology. “We hope that in the near future the already achieved reconstitution of the complex will pave the way to study its atomic structure and presumed function in effector delivery.”

But there is also an applied aspect associated with the essential role of the complex, as Regine Kahmann points out. “Because the complex is indispensable for infection, it is an attractive target for stopping the disease by developing new fungicides”. First steps towards this goal have already been taken by setting up a high throughput screen in collaboration of the Max Planck researchers in Marburg with the Compound Management and Screening Center (COMAS) at the MPI for Molecular Physiology in Dortmund. The screen resulted in several candidate compounds, of which the most promising ones could successfully inhibit disease symptoms not only of U. maydis but also disease caused by a rust fungus. Supported by Max Planck Innovation a patent was recently filed at the European Patent Office, illustrating the transfer of basic research to potential applications in agriculture.

###

Original publication

Ludwig, N.; Reissmann, S.; Schipper, K.; Gonzalez C.; Assmann, D.,; Glatter, T.; Moretti, M.; Ma, L.-S.; Rexer, K.-H.; Snetselaar, K.; Kahmann, R.

A cell surface-exposed protein complex with an essential virulence function in Ustilago maydis.

Nature Microbiology (2021)

Media Contact
Prof. Dr. Regine Kahmann
[email protected]

Original Source

https://www.mpg.de/16739315/0415-terr-on-the-trail-of-an-expert-plant-intruder-153410-x

Related Journal Article

http://dx.doi.org/10.1038/s41564-021-00896-x

Tags: BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Barley DREB Genes: Key Players in Stress Responses

December 16, 2025
Unveiling Prolificacy Genes in Jining Grey Goats

Unveiling Prolificacy Genes in Jining Grey Goats

December 16, 2025

Unveiling Hormone Genes in Prunus persica Seed Dormancy

December 15, 2025

Harnessing Microbial Siderophores for Plant Iron Nutrition

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Micro-Rubbing Enhances Fertilization in Sperm Injection

Testing a Digital Solution for Binge Eating

Optimizing Methane Production from Moroccan Tea Waste

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.