• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Epilepsy research boosts case for new gene therapy for Dravet syndrome

Bioengineer by Bioengineer
January 19, 2022
in Biology
Reading Time: 3 mins read
0
Epilepsy research boosts case for new gene therapy for Dravet syndrome
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research from the University of Virginia School of Medicine suggests how a newly developed gene therapy can treat Dravet syndrome, a severe form of epilepsy, and potentially prolong survival for people with the condition.

Epilepsy research boosts case for new gene therapy for Dravet syndrome

Credit: Courtesy Patel lab at UVA

Research from the University of Virginia School of Medicine suggests how a newly developed gene therapy can treat Dravet syndrome, a severe form of epilepsy, and potentially prolong survival for people with the condition.

The gene therapy, developed by Stoke Therapeutics, is now in clinical trials. Because most Dravet syndrome cases are caused by a mutation in the SCN1A gene, resulting in a reduction in SCN1A protein production, the novel approach is designed to boost production of SCN1A to normal levels. If successful, the approach, called Targeted Augmentation of Nuclear Gene Output, or TANGO,  would be the first treatment for the fundamental cause of the disease, a lack of this particular protein in specialized brain cells.

The new research – from UVA’s Manoj K. Patel, PhD, and Eric R. Wengert, PhD, and their collaborators – demonstrates how the experimental therapy restores the cells’ proper function and reduces seizures in lab mice. 

“Our results show that a single treatment with the TANGO approach into infant mice completely prevented seizures and the premature death typically seen in our mouse model of Dravet syndrome,” said Patel, of UVA’s Department of Anesthesiology. “Further, our study provides the first evidence that TANGO treatment actually targets and rescues the physiological impairment of one group of brain cells known to cause seizures in Dravet syndrome.” 

TANGO for Dravet Syndrome

Dravet syndrome is a rare but serious form of epilepsy that typically first appears in babies and young children. Patients have frequent, prolonged seizures; behavioral issues; developmental delays; movement and balance issues; and other problems. People with the condition often require constant care and face an increased risk of sudden death. It is thought to affect approximately 1 in 15,700 individuals.

Existing treatments for Dravet syndrome include medications, vagus nerve stimulation and the adoption of an extremely low-carb ketogenic diet. But none of the treatments directly addresses the underlying cause of the disease, the missing protein in nerve cells called interneurons. Stoke’s gene therapy aims to change that by prompting the gene responsible for the protein to increase production.

Patel and his team wanted to see what effect restoring the missing protein might have on the interneurons’ activity. Working with a mouse model of Dravet syndrome, they found that a single treatment with the TANGO therapy rescued the deficits in the interneurons and made them behave like those that naturally had the full amount of the protein. The interneurons, which function to constrain the brain’s excitability and protect against seizures, became more responsive, more active, and better able to do their jobs. As a result, the TANGO treatment decreased seizures, and the Dravet syndrome mice lived longer. 

The results, the researchers say, suggest that the gene therapy is directly addressing the underlying cause of the disease. While mouse findings do not always hold true in humans, the results bode well as human testing continues. The findings also suggest that the approach may be useful in treating other forms of epilepsy caused by mutations in the SCN1A gene, the UVA scientists say.

“It can be difficult for patients with Dravet syndrome to find good treatment options, as many conventional treatments often fail to fully block seizures and prevent sudden death,” Wengert said. “This process of developing and validating gene therapy approaches that directly address the core mechanism of genetic epilepsy syndromes is exciting work that we hope will go on to help many people. These results take us one step closer to that reality.”  

After the TANGO clinical trials are complete, the therapy would need approval from the federal Food and Drug Administration before it could become available to patients.

Findings Published

The researchers have published their findings in the scientific journal Brain Research. The research team consisted of Wengert, Pravin K. Wagley, Samantha M. Strohm, Nuha Reza, Ian C. Wenker, Ronald P. Gaykema, Anne Christiansen, Gene Liau and Patel. The work was funded by Stoke Therapeutics.

To keep up with the latest medical research news from UVA, subscribe to the Making of Medicine blog at http://makingofmedicine.virginia.edu.



COI Statement

Wenker and Patel own stock in Stoke Therapeutics, while Christiansen and Liau are employed by the company and own stock. The work was funded by Stoke.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

OfGATA9 Boosts Flower Size in Sweet Osmanthus

October 3, 2025
Exploring Phytobiotics in Fish and Shellfish

Exploring Phytobiotics in Fish and Shellfish

October 3, 2025

Conserved Small Sequences Revealed by Yeast Ribo-seq

October 3, 2025

Atlas Reveals Testicular Aging Across Species

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-COVID Shifts in Infant RSV Patterns and Outcomes

Assessing Isolation Training for Caregivers: A Study

Exploring Mitochondrial Dynamics in Cancer Drug Resistance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.