• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Epigenetic treatment in mice improves spinal cord regeneration after injury

Bioengineer by Bioengineer
September 20, 2022
in Health
Reading Time: 3 mins read
0
Epigenetic treatment in mice improves spinal cord regeneration after injury
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Currently, spinal cord injury does not have any effective treatments; physical rehabilitation can help patients regain some mobility, but for severe cases the outcomes are extremely limited by the failure of spinal neurons to regenerate naturally after injury. However, in a study publishing September 20th in the open access journal PLOS Biology, researchers led by Simone Di Giovanni at Imperial College London in the UK show that weekly treatments with an epigenetic activator can aid the regrowth of sensory and motor neurons in the spinal cord when given to mice 12 weeks after severe injury.

Epigenetic treatment in mice improves spinal cord regeneration after injury

Credit: Franziska Mueller (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/)

Currently, spinal cord injury does not have any effective treatments; physical rehabilitation can help patients regain some mobility, but for severe cases the outcomes are extremely limited by the failure of spinal neurons to regenerate naturally after injury. However, in a study publishing September 20th in the open access journal PLOS Biology, researchers led by Simone Di Giovanni at Imperial College London in the UK show that weekly treatments with an epigenetic activator can aid the regrowth of sensory and motor neurons in the spinal cord when given to mice 12 weeks after severe injury.

Building on their past success, researchers used a small molecule called TTK21 to activate genetic programming that induces axon regeneration in neurons. TTK21 changes the epigenetic state of genes by activating the CBP/p300 family of co-activator proteins. They tested TTK21 treatment in a mouse model of severe spinal cord injury. The mice lived in an enriched environment that gave them opportunities to be physically active, as is encouraged in human patients.

Treatment began 12 weeks after severe spinal cord injury and lasted for 10 weeks. Researchers found several improvements after TTK21 treatment compared with control treatment. The most noticeable effect was more axon sprouting in the spinal cord. They also found that retraction of motor axons above the point of injury halted, and that sensory axon growth increased. These changes were likely due to the observed increase in gene expression related to regeneration. The next step will be to enhance these effects even more and to trigger the regenerating axons to reconnect to the rest of the nervous system so that animals can regain their ability to move with ease.

Di Giovanni adds, “This work shows that a drug called TTK21 that is administered systemically once/week after a chronic spinal cord injury (SCI) in animals can promote neuronal regrowth and an increase in synapses that are needed for neuronal transmission. This is important because chronic spinal cord injury is a condition without a cure where neuronal regrowth and repair fail. We are now exploring the combination of this drug with strategies that bridge the spinal cord gap such as biomaterials as possible avenues to improve disability in SCI patients.”

#####

In your coverage, please use this URL to provide access to the freely available paper in PLOS Biology:   http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3001310

Citation: Müller F, De Virgiliis F, Kong G, Zhou L, Serger E, Chadwick J, et al. (2022) CBP/p300 activation promotes axon growth, sprouting, and synaptic plasticity in chronic experimental spinal cord injury with severe disability. PLoS Biol 20(9): e3001310. https://doi.org/10.1371/journal.pbio.3001310

Author Countries: United Kingdom, India

Funding: ISRT translational award-P90397 to SDG Marina Romoli Onlus-P82836 to SDG Rosetrees Trust-P72986 to SDG Brain Research Trust-P73576 to SDG The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS Biology

DOI

10.1371/journal.pbio.3001310

Method of Research

Experimental study

Subject of Research

Animals

COI Statement

Competing interests: The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Auditory Change Processing Markers Unusual in Autism

October 23, 2025

Innovative Center Pioneers Brighter Future for Trauma Survivors

October 23, 2025

Exploring Vicarious Trauma in Hospice Nurses

October 23, 2025

Assessing Muscularity Overvaluation and Eating Disorder Risks

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.