• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Epigenetic editing reveals surprising insights into early breast cancer development

Bioengineer by Bioengineer
November 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Changing the epigenetic code of a single gene is enough to cause a healthy breast cell to begin a chain reaction and become abnormal, according to research by Queen Mary University of London (QMUL).

The findings could lead to earlier cancer diagnosis and the potential for new therapeutics in the form of gene editing.

Epigenetic changes are a hallmark of cancer, but up until now, it has not been known whether these changes on their own are sufficient to push healthy cells down the cancer path.

Using a CRISPR-dCas9 epigenetic editing tool, the researchers methylated different genes in healthy breast cells and found that those changes were sufficient to cause the cells to undergo 'hyperproliferation' – abnormally rapid cell division which is an early stage of tumour initiation.

The research, using cells from the Breast Cancer Now Tissue Bank and due to be published in Nature Communications, also shows that the epigenetic changes are inherited as long as the cell divides, and that the team's manipulations permanently and negatively affected the biology of a normal breast cell from a healthy individual.

Lead researcher Dr Gabriella Ficz from QMUL's Barts Cancer Institute said: "It's surprising that cells from several healthy individuals are so permissive to gaining this epigenetic change and that one 'hit' from an epigenetic editing tool is sufficient to set off this chain reaction of epigenetic inheritance and establish a cancer cell-like gene expression signature."

The findings may help scientists to better understand the earliest epigenetic changes which can initiate abnormal cell processes, and the transition between the pre-disease state and cancer. This could help with the development of new biomarkers for earlier diagnosis.

In the future, epigenetic editing could also be used to design novel therapies by initiating permanent changes to cell biology. This may be a more viable or alternative way forward for gene editing as any potential mistakes would be less damaging than directly editing the DNA sequence, and epigenetic editing would be more easily reversible if needed.

Dr Ficz also explains that the findings could have an impact on our knowledge of ageing and cancer: "Epigenetic fluctuations happen all the time in our cells. We know that, during ageing, our epigenome is progressively distorted – so called 'epigenetic drift'. It will therefore be exciting to find out if this drift is responsible for initiating or accelerating ageing-associated diseases. Age is the biggest risk in cancer so our work highlights the importance of understanding the mechanism behind epigenetic drift."

###

Research paper: 'Hit-and-run epigenetic editing prevents senescence entry in primary breast cells from healthy donors'. Emily A. Saunderson, Peter Stepper, Jennifer J. Gomm, Lily Hoa, Adrienne Morgan, Michael D. Allen, J. Louise Jones, John G. Gribben, Tomasz P. Jurkowski & Gabriella Ficz. Nature Communications. Doi: 10.1038/s41467-017-01078-2

The research paper will appear here after the embargo lifts: http://dx.doi.org/10.1038/s41467-017-01078-2

Media Contact

Joel Winston
[email protected]
44-207-882-7943
@QMUL

http://www.qmul.ac.uk

http://dx.doi.org/10.1038/s41467-017-01078-2

Share15Tweet7Share2ShareShareShare1

Related Posts

Food’s Impact on Species Extinction Varies Significantly

October 13, 2025

Accelerated Sterility Testing for Biopharmaceuticals in One Day

October 13, 2025

New Bacterial Species Discovered in Cyclosorus Soil

October 13, 2025

Markers Forecast Bladder Cancer Recurrence Post-BCG Treatment

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1228 shares
    Share 490 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Food’s Impact on Species Extinction Varies Significantly

Accelerated Sterility Testing for Biopharmaceuticals in One Day

New Bacterial Species Discovered in Cyclosorus Soil

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.