• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Enzyme found to control formation of collagen carriers and inhibit collagen secretion

Bioengineer by Bioengineer
June 11, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Biochemical and Biophysical Research Communications

Researchers at Tokyo Institute of Technology (Tokyo Tech) have identified an enzyme that controls how much our cells secrete collagen. As collagen imbalance is linked to a range of human diseases, the study provides clues to new therapeutic strategies. Moreover, the findings could facilitate efficient production of collagen for the food, cosmetic and pharmaceutical industries.

All of our cells make and release proteins. The proteins are packaged as "cargo" in tiny, bubble-like vesicles before being transported outside the cell. This process, known as secretion, is vital to healthy growth and development.

Although many studies have shown how these vesicles, called COPII carriers[1], handle relatively small-sized cargo, few have focused on the workings of unusually large carriers known to package very large proteins, such as collagen.

Now, a study by researchers including Masayuki Komada, Toshiaki Fukushima and graduate student Kohei Kawaguchi at Tokyo Institute of Technology has identified USP8 as a key enzyme involved in controlling the formation of large collagen carriers. They have reported their findings in the journal Biochemical and Biophysical Research Communications.

The team showed that "switching on" USP8 inhibited the formation of large carriers, and thus reduced collagen secretion. Conversely, switching USP8 off promoted collagen transport, which led to increased collagen secretion. (See Figures 1-3.)

The findings have big implications for medicine and biotechnology. Excessive collagen secretion in the human body is known to cause organ fibrosis[2], while too little collagen secretion is associated with bone diseases including cranio-lenticulo-sutural dysplasia (CLSD) and Cole-Carpenter syndrome. New treatments for these diseases could be developed through further understanding of USP8's exact mode of action. Such knowledge could also provide new ways of scaling up commercial production of collagen.

The researchers have demonstrated that the enzyme works by deubiquitinating a protein called Sec31A, a component of the COPII vesicle coat required for protein export.

One particular group of proteins called the USP8-STAM1 complex[3] appears to be responsible for deubiquitinating Sec31A, as illustrated in Figure 3.

The study builds on many years of research that have illuminated the versatility of USP8.

"We had previously reported that USP8 regulates pituitary hormone secretion[4]," says Fukushima, referring to a paper published in Nature Genetics in 2015. "In the process of that study, we accidentally found that the USP8-STAM1 complex binds to Sec31."

It was this "accidental" finding, combined with promising results from other groups in the US, that led the team to examine the role of USP8 in the formation of COPII carriers.

In research tracing back more than a decade, Komada and others have clarified the conventional role of USP8 in the regulation of endocytosis5. "It's very interesting that the same USP8-STAM1 complex has now been shown to play an important role both in the regulation of endocytosis and in secretion," Fukushima says.

The present study therefore reveals a "new face" of the USP8 enzyme, and Fukushima hints that there may be more surprises to come. USP8 belongs to a family of around 90 known deubiquitinating enzymes, which continue to be a hot topic in cellular biology.

###

Technical terms

[1] COPII carriers: Bubble-like vesicles that wrap up proteins inside cells. They typically have a diameter of 60-70 nanometers (nm), but larger ones are capable of transporting macromolecules such as collagen, which can have a length of 300-400 nm or more.

[2] Organ fibrosis: The development of excessive fibrous tissues, which can lead to organ malfunction.

[3] USP8-STAM1 complex: A group of proteins consisting of the enzyme USP8 and a signal transducing adaptor molecule, STAM1. The latter possesses substrate recognition domains, which enable it to recognize ubiquitinated proteins. These proteins can then be deubiquitinated by USP8.

[4] Pituitary hormone secretion: Referring to hormones secreted by the pituitary gland, at the base of the brain. The USP8 gene is often mutated to generate a hyperactive form of USP8, which can cause excessive secretion of a hormone called ACTH from the pituitary. This excessive secretion is one of the causes of a condition called Cushing's disease.

[5] Endocytosis: The transportation of molecules into a cell via its membrane.

Related links

http://www.nature.com/articles/ng.3166

http://www.rcb.iir.titech.ac.jp/en/lab_komada.html

Media Contact

Emiko Kawaguchi
[email protected]
81-357-342-975

http://www.titech.ac.jp/english/index.html

Original Source

https://www.titech.ac.jp/english/ http://dx.doi.org/10.1016/j.bbrc.2018.03.202

Share15Tweet7Share2ShareShareShare1

Related Posts

Key Genes Identified in Nutrient Stress During Virus Infection

Key Genes Identified in Nutrient Stress During Virus Infection

August 26, 2025
Scolopsis ghanam captured by Rebekka Pentti for NYU Abu Dhabi Credit Rebekka Pentti for NYU Abu Dhabi

NYU Abu Dhabi Researchers Identify Unique Survival Strategies Adopted by Fish in the World’s Warmest Waters

August 26, 2025

Catfish Expert Releases Updated Volume on Catfish Biology and Evolution

August 26, 2025

SLC6A15 Linked to Keloids: Insights from Bioinformatics

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Wheat’s Resistance to Spot Blotch through Elicitors

Honoring Public Health Nurses: Giving Them the Recognition They Deserve

New Indolylpyrazole Derivatives Target Chronic Myeloid Leukemia

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.