• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Environmentally friendly method could lower costs to recycle lithium-ion batteries

Bioengineer by Bioengineer
November 12, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Panpan Xu

A new process for restoring spent cathodes to mint condition could make it more economical to recycle lithium-ion batteries. The process, developed by nanoengineers at the University of California San Diego, is more environmentally friendly than today’s methods; it uses greener ingredients, consumes 80 to 90% less energy, and emits about 75% less greenhouse gases.

Researchers detail their work in a paper published Nov 12 in Joule.

The process works particularly well on cathodes made from lithium iron phosphate, or LFP. Batteries made with LFP cathodes are less costly than other lithium-ion batteries because they don’t use expensive metals like cobalt or nickel. LFP batteries also have longer lifetimes and are safer. They are widely used in power tools, electric buses and energy grids. They are also the battery of choice for Tesla’s Model 3.

“Given these advantages, LFP batteries will have a competitive edge over other lithium-ion batteries in the market,” said Zheng Chen, a professor of nanoengineering at UC San Diego.

The problem? “It’s not cost-effective to recycle them,” Chen said. “It’s the same dilemma with plastics–the materials are cheap, but the methods to recover them are not.”

The new recycling process that Chen and his team developed could lower these costs. It does the job at low temperatures (60 to 80 C) and ambient pressure, making it less power hungry than other methods. Also, the chemicals it uses–lithium salt, nitrogen, water and citric acid–are inexpensive and benign.

“The whole regeneration process works at very safe conditions, so we don’t need any special safety precautions or special equipment. That’s why we can make this so low cost for recycling batteries,” said first author Panpan Xu, a postdoctoral researcher in Chen’s lab.

The researchers first cycled commercial LFP cells until they had lost half their energy storage capacity. They took the cells apart, collected the cathode powders, and soaked them in a solution containing lithium salt and citric acid. Then they washed the solution with water, dried the powders and heated them.

The researchers made new cathodes from the powders and tested them in both coin cells and pouch cells. Their electrochemical performance, chemical makeup and structure were all fully restored to their original states.

As the battery cycles, the cathode undergoes two main structural changes that are responsible for its decline in performance. The first is the loss of lithium ions, which creates empty sites called vacancies in the cathode structure. The other occurs when iron and lithium ions switch spots in the crystal structure. When this happens, they cannot easily switch back, so lithium ions become trapped and can no longer cycle through the battery.

The process restores the cathode’s structure by replenishing lithium ions and making it easy for iron and lithium ions to switch back to their original spots. The latter is accomplished using citric acid, which acts as a reducing agent–a substance that donates an electron to another substance. Citric acid transfers electrons to the iron ions, making them less positively charged. This minimizes the electronic repulsion forces that prevent the iron ions from moving back into their original spots in the crystal structure, and also releases the lithium ions back into circulation.

While the overall energy costs of this recycling process are lower, researchers say further studies are needed on the logistics of collecting, transporting and handling large quantities of batteries.

“Figuring out how to optimize these logistics is the next challenge,” Chen said. “And that will bring this recycling process closer to industry adoption.”

###

Media Contact
Liezel Labios
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.joule.2020.10.008

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Age, Insects Shape Cadaver Microbes, Aid PMI

Revolutionary Classifier Uncovers Prokaryotic Efflux Proteins

DeepMice: Revolutionary Protein-Ligand Docking Model Unveiled

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.