• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

'Environmentally friendly' flame retardant could degrade into less safe compounds

Bioengineer by Bioengineer
January 9, 2019
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To reduce the risk of fire, many everyday products — from building materials to furniture to clothing — contain flame retardants. In recent years, some of these compounds were shown to have harmful effects on the environment, causing them to be replaced by more eco-friendly alternatives. However, a new study in ACS’ journal Environmental Science & Technology, indicates that heat or ultraviolet light could break down a “safe” flame retardant into potentially harmful compounds.

Some brominated flame retardants, such as hexabromocyclododecane (HBCD), persist and bioaccumulate in the environment, potentially having toxic effects on organisms. As a result, some international regulatory bodies have banned HBCD, which is commonly used in polystyrene foam insulation. A replacement for HBCD, polymeric flame retardant (polyFR) is a large polymer that it is much less likely to enter cells or accumulate in the food chain. Although polyFR is considered a more environmentally friendly flame retardant, the long-term behavior of the chemical is unknown. So Christoph Koch, Bernd Sures and colleagues examined whether heat or ultraviolet light — which could be encountered during the product’s use as insulation in a hot attic or after its disposal in an open landfill — could break down polyFR into smaller, potentially more harmful substances.

To simulate different environmental conditions polyFR might encounter during its lifetime, the researchers exposed the flame retardant powder to heat (140 F) or ultraviolet light and analyzed the samples with mass spectrometry. When the researchers irradiated polyFR with ultraviolet light for 3 hours, they detected 75 different degradation products, including eight containing bromine. In contrast, heat treatment for 36 weeks yielded only seven degradation products, one of which contained bromine. Because some of the detected compounds were small and brominated, they have the potential to be harmful, say the researchers. The team notes that polyFR may degrade differently when incorporated with polystyrene into foam insulation.

###

The authors do not acknowledge any funding sources.

The paper’s abstract will be available on January 9 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.8b03872

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: Chemistry/Physics/Materials SciencesCivil EngineeringPollution/RemediationTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

January 11, 2026
Unlocking Sperm Motility: Insights from Chicken Genetics

Unlocking Sperm Motility: Insights from Chicken Genetics

January 11, 2026

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

January 10, 2026

OFP Gene Family in Soybean: Height and Salinity Insights

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    50 shares
    Share 20 Tweet 13
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12
v>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Eye Care Guidelines for Prone Ventilation

Guillain-Barré Syndrome Linked to TNF Inhibitor in Blau

Dual Nanocarriers Target Smad3 and Runx2 in Aortic Valve Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.