• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Enlarged prostate later in life could stem from fetal development early on

Bioengineer by Bioengineer
March 13, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

EAST LANSING, Mich. — New research from Michigan State University indicates that embryonic tissue, key to the development of a baby's gender, could contribute to an enlarged prostate, or BPH, in men later in life.

It's estimated that up to 90 percent of older men experience BPH, or benign prostatic hyperplasia, and quality of life can be severely affected.

"During development, both male and female embryos start out having certain fetal tissue called the Müllerian duct mesenchyme," said Jose Teixeira, professor of reproductive biology in the College of Human Medicine and lead author of the federally funded study. "Human male embryos need to get rid of this tissue typically between 7 to 10 weeks after conception or else they will develop a uterus."

According to Teixeira, his latest findings, now published in PNAS, clearly show that some of this tissue remains in male mice and contributes to cells where the prostate is located.

"No one really has known the origin of this disease," Teixeira said. "But we now have early clues that this remnant tissue in the mice becomes part of the tissue that would go on to develop an enlarged prostate."

Teixeira and his team also found that a malfunctioning tumor-suppressing gene that's associated with certain cancers, such as colon and pancreatic, and is known as Stk11, additionally influenced the development of BPH.

"By altering the Stk11 gene, the number of cells in this embryonic tissue multiplied above what is needed and caused the prostate tissue surrounding the urethra to grow," Teixeira said.

This overgrowth of tissue is what he indicated could cause the lower urinary tract symptoms, such as difficulty urinating, in older men with the disease.

"Most drugs or procedures on the market today just treat the symptoms, not the disease itself," Teixeira said. "Our study could open up a whole new pathway for targeted treatments to help shrink the prostate tissue or stop it from growing further."

Before this can happen though, Teixeira said that his team will first have to determine whether the Stk11 gene or the other genes and proteins it controls are similarly affected in the human form of BPH.

###

Other MSU contributors on the study include postdoctoral students Jitu George and Amanda Patterson.

The National Institutes of Health funded the research.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Media Contact

Sarina Gleason
[email protected]
517-355-9742
@MSUnews

http://msutoday.msu.edu/journalists/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

TyG-ABSI: A New Obesity Marker for Carotid Plaque

December 16, 2025
blank

Unlocking Fagopyrum: DNA Barcoding and Nutritional Insights

December 16, 2025

New Insights into Micro- and Nanoplastics Neurotoxicity

December 16, 2025

S-Methylcysteine Shields Rats from Toxoplasma Reproductive Harm

December 16, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

TyG-ABSI: A New Obesity Marker for Carotid Plaque

Unlocking Fagopyrum: DNA Barcoding and Nutritional Insights

New Insights into Micro- and Nanoplastics Neurotoxicity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.