• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Endless forms most beautiful: Why evolution favours symmetry

Bioengineer by Bioengineer
March 14, 2022
in Biology
Reading Time: 4 mins read
0
Bacterium
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

From sunflowers to starfish, symmetry appears everywhere in biology. This isn’t just true for body plans – the molecular machines keeping our cells alive are also strikingly symmetric. But why? Does evolution have a built-in preference for symmetry?

An international team of researchers believe so, and have combined ideas from biology, computer science and mathematics to explain why. As they report in PNAS, symmetric and other simple structures emerge so commonly because evolution has an overwhelming preference for simple “algorithms” – that is, simple instruction sets or recipes for producing a given structure.

“Imagine having to tell a friend how to tile a floor using as few words as possible,” says Iain Johnston, a professor at the University of Bergen and author on the study. “You wouldn’t say: put diamonds here, long rectangles here, wide rectangles here. You’d say something like: put square tiles everywhere. And that simple, easy recipe gives a highly symmetric outcome.”

The team used computational modeling to explore how this preference comes about in biology. They showed that many more possible genomes describe simple algorithms than more complex ones. As evolution searches over possible genomes, simple algorithms are more likely to be discovered – as are, in turn, the more symmetric structures that they produce. The scientists then connected this evolutionary picture to a deep result from the theoretical discipline of algorithmic information
theory.

“These intuitions can be formalized in the field of algorithmic information theory, which provides quantitative predictions for the bias towards descriptive simplicity”, says Ard Louis, professor at the University of Oxford and corresponding author on the study.

The study’s key theoretical idea can be illustrated by a twist on a famous thought experiment in evolutionary biology, which pictures a room full of monkeys trying to write a book by typing randomly on a keyboard. Imagine the monkeys are instead trying to write a recipe. Each is far more likely to randomly hit the letters required to spell out a short, simple recipe than a long, complicated one. If we then follow any recipes the monkeys have produced – our metaphor for producing biological structures from genetic information – we will produce simple outcomes much more often than complicated ones.

The scientists show that a wide range of biological structures and systems, from proteins to RNA and signaling networks, adopt algorithmically simple structures with probabilities as predicted by this theory. Going forward, they plan to investigate the predictions that their theory makes for biases in larger-scale developmental processes.

Bacterium

Credit: Image: Iain Johnston/ PyMOL-Source data: PDB DOI: 10.2210/pdb1NKZ/pdb ; Papiz et al. (2003) J Mol Biol 326: 1523-1538

From sunflowers to starfish, symmetry appears everywhere in biology. This isn’t just true for body plans – the molecular machines keeping our cells alive are also strikingly symmetric. But why? Does evolution have a built-in preference for symmetry?

An international team of researchers believe so, and have combined ideas from biology, computer science and mathematics to explain why. As they report in PNAS, symmetric and other simple structures emerge so commonly because evolution has an overwhelming preference for simple “algorithms” – that is, simple instruction sets or recipes for producing a given structure.

“Imagine having to tell a friend how to tile a floor using as few words as possible,” says Iain Johnston, a professor at the University of Bergen and author on the study. “You wouldn’t say: put diamonds here, long rectangles here, wide rectangles here. You’d say something like: put square tiles everywhere. And that simple, easy recipe gives a highly symmetric outcome.”

The team used computational modeling to explore how this preference comes about in biology. They showed that many more possible genomes describe simple algorithms than more complex ones. As evolution searches over possible genomes, simple algorithms are more likely to be discovered – as are, in turn, the more symmetric structures that they produce. The scientists then connected this evolutionary picture to a deep result from the theoretical discipline of algorithmic information
theory.

“These intuitions can be formalized in the field of algorithmic information theory, which provides quantitative predictions for the bias towards descriptive simplicity”, says Ard Louis, professor at the University of Oxford and corresponding author on the study.

The study’s key theoretical idea can be illustrated by a twist on a famous thought experiment in evolutionary biology, which pictures a room full of monkeys trying to write a book by typing randomly on a keyboard. Imagine the monkeys are instead trying to write a recipe. Each is far more likely to randomly hit the letters required to spell out a short, simple recipe than a long, complicated one. If we then follow any recipes the monkeys have produced – our metaphor for producing biological structures from genetic information – we will produce simple outcomes much more often than complicated ones.

The scientists show that a wide range of biological structures and systems, from proteins to RNA and signaling networks, adopt algorithmically simple structures with probabilities as predicted by this theory. Going forward, they plan to investigate the predictions that their theory makes for biases in larger-scale developmental processes.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2113883119

Article Title

Symmetry and simplicity spontaneously emerge from the algorithmic nature of evolution

Article Publication Date

11-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

September 11, 2025
blank

Complete Chloroplast Genome of Cyathea delgadii Revealed

September 11, 2025

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lumpy Skin Disease: Efficacy of Antibacterial Treatments in Cattle

Poly-L-Histidine-Coated Nanoparticles for Targeted Doxorubicin Delivery

Revolutionary Ion Exchange Membranes for Arsenic Removal

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.