• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Empirical energy consumption model quantifies Bitcoin’s carbon footprint

Bioengineer by Bioengineer
June 12, 2019
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers have conducted the first analysis of Bitcoin power consumption based on empirical data from IPO filings and localization of IP addresses. They found that the cryptocurrency’s carbon emissions measure up to those of Kansas City–or a small nation. The study, published June 12 in the journal Joule, suggests that cryptocurrencies contribute to global carbon emissions, an issue that must be considered in climate change mitigation efforts.

Bitcoin and other cryptocurrencies rely on blockchain technology, which enables a secure network without relying on a third party. Instead, so-called Bitcoin “miners” guarantee a system without fraud by validating new transactions. Miners solve puzzles for numerical signatures, a process that requires enormous amounts of computational power. In return, miners receive Bitcoin currency.

“This process results in immense energy consumption, which translates into a significant carbon footprint,” says Christian Stoll, a researcher at the Center for Energy Markets at the Technical University of Munich, Germany, and the MIT Center for Energy and Environmental Policy Research.

Scientists have growing concerns that Bitcoin mining is fueling an appetite for energy consumption that sometimes draws from questionable fuel sources–such as coal from Mongolia–in addition to hydropower and other low-carbon power resources. And cryptocurrency’s energy issues seem to only be getting worse, with the computing power required to solve a Bitcoin puzzle increasing more than four-fold in 2018. While there is a growing push among researchers to quantify Bitcoin’s energy consumption in order to better understand its contribution to global climate change, recent studies have struggled to generate accurate estimates.

“We argue that our work goes beyond prior work,” says Stoll. “We can provide empirical evidence where current literature is based on assumptions.”

Stoll and his team used IPO filings disclosed in 2018 by all major mining hardware producers to determine which machines miners are actually using and the power efficiencies of these machines. They also used IP addresses to determine emissions scenarios for actual mining locations and compare carbon emissions from power sources used by Bitcoin miners in different locations. Finally, they calculated Bitcoin’s carbon footprint based on its total power consumption and estimates from different emissions scenarios. These include a lower limit scenario, in which all miners use the most efficient hardware; an upper limit scenario, in which miners behave rationally by disconnecting their hardware as soon as costs exceed revenue; and a best guess scenario, which accounts for the anticipated energy efficiency of the network and realistic additional energy losses from cooling and IT hardware.

“Our model reflects how the connected computing power and the difficulty of Bitcoin search puzzles interact, and it provides a high precision of power consumption since it incorporates auxiliary losses,” says Stoll. “However, the precision of our results strongly depends on the accuracy of the input data, such as the IPO filings for hardware characteristics. The carbon emissions strongly depend on the assumed carbon intensity of power consumption.”

Using this model, Stoll and his team estimated Bitcoin’s annual energy consumption at 45.8 terawatt hours. This allowed them to calculate an annual carbon emissions range between 22.0 and 22.9 megatons of CO2–equivalent to CO2 emitted by Kansas City and placing Bitcoin’s emissions between Jordan and Sri Lanka in emissions rankings (the 82nd and 83rd highest emitters). However, the researchers estimate that the energy consumption estimate would almost double (greatly amplifying emissions estimates) if they were to include all other cryptocurrencies in their consequences.

“We do not question the efficiency gains that blockchain technology could, in certain cases, provide,” says Stoll. “However, the current debate is focused on anticipated benefits, and more attention needs to be given to costs.”

###

Joule, Stoll et al.: “The Carbon Footprint of Bitcoin” https://www.cell.com/joule/fulltext/S2542-4351(19)30255-7

Joule (@Joule_CP), published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact [email protected].

Media Contact
Carly Britton
[email protected]
http://dx.doi.org/10.1016/j.joule.2019.05.012

Tags: Computer ScienceEnergy/Fuel (non-petroleum)HardwareInternetTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.