• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Elements can be solid and liquid at the same time, study reveals

Bioengineer by Bioengineer
April 8, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists have discovered a new state of physical matter in which atoms can exist as both solid and liquid simultaneously.

Until now, the atoms in physical material were understood to exist typically in one of three states – solid, liquid or gas. Researchers have found, however, that some elements can, when subjected to extreme conditions, take on the properties of both solid and liquid states.

Applying high pressures and temperatures to potassium – a simple metal – creates a state in which most of the element’s atoms form a solid lattice structure, the findings show. However, the structure also contains a second set of potassium atoms that are in a fluid arrangement.

Under the right conditions, over half a dozen elements – including sodium and bismuth – are thought to be capable of existing in the newly discovered state, researchers say.

Until now, it was unclear if the unusual structures represented a distinct state of matter, or existed as transition stages between two distinct states.

A team led by scientists from the University of Edinburgh used powerful computer simulations to study the existence of the state – known as the chain-melted state. Simulating how up to 20,000 potassium atoms behave under extreme conditions revealed that the structures formed represent the new, stable state of matter.

Applying pressure to the atoms leads to the formation of two interlinked solid lattice structures, the team says. Chemical interactions between atoms in one lattice are strong, meaning they stay in a solid form when the structure is heated, while the other atoms melt into a liquid state.

The study, published in the journal Proceedings of the National Academy of Sciences, was supported by the European Research Council and the Engineering and Physical Sciences Research Council. The work was carried out in collaboration with scientists from Xi’an Jiantong University in China.

Dr Andreas Hermann, of the University of Edinburgh’s School of Physics and Astronomy, who led the study, said: “Potassium is one of the simplest metals we know, yet if you squeeze it, it forms very complicated structures. We have shown that this unusual but stable state is part solid and part liquid. Recreating this unusual state in other materials could have all kinds of applications.”

###

Media Contact
Catriona Kelly
[email protected]

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsBiochemistryChemistry/Physics/Materials SciencesMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

Impact of Hurricane Helene on Groundwater Chemistry: A Scientific Analysis

October 28, 2025
blank

Could Neutrinos Unlock the Mysteries of Our Existence?

October 28, 2025

Introducing the World’s First Online Course on Carbon Dioxide Removal: A Breakthrough for Climate Science Education

October 28, 2025

Nanographene Morphs: Oxidation Bends Molecules, Alters Properties!

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

NeoSONAR: Advancing Newborn Resuscitation with Ultrasound

Boosting Ionization in RF Plasma Thrusters with Magnets

Study Finds Cocoa Flavanols Help Preserve Blood Vessel Function During Prolonged Sitting

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.