• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Electronic implant reactivates spinal-cord nerves of a patient with neurodegenerative disease

Bioengineer by Bioengineer
April 6, 2022
in Biology
Reading Time: 3 mins read
0
Patient with multiple system atrophy-parkinsonian type (MSA-P) was able to stand and walk after one year of being bedridden.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A patient suffering from a debilitating neurodegenerative disease was able to get up and walk again after being bedridden for over a year, thanks to an innovative system developed by a team of scientists at the NeuroRestore research center headed by Jocelyne Bloch, a neurosurgeon at Lausanne University Hospital (CHUV) and Professor at University of Lausanne UNIL, and Grégoire Courtine, an EPFL professor in neuroscience. Their system includes electronics implanted directly on the spinal cord to reactivate the neurons that regulate blood pressure, thereby preventing the patient from losing consciousness every time she’s in an upright position.

Patient with multiple system atrophy-parkinsonian type (MSA-P) was able to stand and walk after one year of being bedridden.

Credit: EPFL / Jimmy Ravier

A patient suffering from a debilitating neurodegenerative disease was able to get up and walk again after being bedridden for over a year, thanks to an innovative system developed by a team of scientists at the NeuroRestore research center headed by Jocelyne Bloch, a neurosurgeon at Lausanne University Hospital (CHUV) and Professor at University of Lausanne UNIL, and Grégoire Courtine, an EPFL professor in neuroscience. Their system includes electronics implanted directly on the spinal cord to reactivate the neurons that regulate blood pressure, thereby preventing the patient from losing consciousness every time she’s in an upright position.

The implant had already been used to treat low blood pressure in tetraplegic patients, but this was the first time it was applied to this kind of neurodegenerative disease, substantially improving the patient’s quality of life. 

The study, titled “Implanted System for Orthostatic Hypotension in Multiple System Atrophy”, was published in The New England Journal of Medicine. The patient in the study suffers from multiple system atrophy-parkinsonian type (MSA-P), a neurodegenerative disease that afflicts several parts of the nervous system, including the sympathetic nervous system. After being bedridden for 18 months, the patient can now walk up to 250 meters.

MSA-P leads to the loss of sympathetic neurons that regulate blood pressure, which tends therefore to drop dramatically as soon as patients are in an upright position – a problem known as orthostatic hypotension – in some cases causing them to faint. This makes them more likely to fall, limits their ability to stand and walk around, and can eventually shorten life expectancy. Patients’ quality of life is reduced considerably since they must remain in a reclined position to avoid passing out.

The scientists’ implant consists of electrodes connected to an electrical-impulse generator that’s commonly used to treat chronic pain. After implanting their device directly on the patient’s spinal cord, the scientists found an improvement in the body’s capacity to regulate blood pressure, enabling the patient to remain conscious for longer periods in an upright position and to begin physical therapy to walk again.

For Jocelyne Bloch, this advance paves the way to important clinical breakthroughs in treating degenerative diseases: “We’ve already seen how this type of therapy can be applied to patients with a spinal-cord injury. But now, we can explore applications in treating deficiencies resulting from neurodegeneration. This is the first time we’ve been able to improve blood-pressure regulation in people suffering from MSA.” Grégoire Courtine adds: “This technology was initially intended for pain relief, not for this kind of application. Going forward, we and our company Onward Medical plan to develop a system targeted specifically to orthostatic hypotension that can help people around the world struggling with this disorder.”



Journal

New England Journal of Medicine

DOI

10.1056/NEJMoa2112809

Method of Research

Randomized controlled/clinical trial

Subject of Research

People

Article Title

Implanted System for Orthostatic Hypotension in Multiple-System Atrophy

Article Publication Date

7-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientist, Advocate, and Entrepreneur Lucy Shapiro Honored with Lasker-Koshland Special Achievement Award

September 11, 2025
blank

Zoology Spotlight: Octopuses Always Use Their Best Arm for Every Task

September 11, 2025

Drivers of Human-Gaur Conflict in Tamil Nadu

September 11, 2025

Korea University Study Uncovers Hidden Complexity Within Recurrent Brain Tumors

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Creating AI Companions for Caregiver Role Transitions

Antenatal Origins and Treatments of Neurodevelopment in CHD

Fast Solid-Phase Creation of Crystalline COF Platelets

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.