• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Electromagnetic chirality: From fundamentals to nontraditional chiroptical phenomena

Bioengineer by Bioengineer
September 2, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Jungho Mun, Minkyung Kim, Younghwan Yang, Trevon Badloe, Jincheng Ni, Yang Chen, Cheng-Wei Qiu, and Junsuk Rho

Recent advancements in artificial nanomaterials and structured optical fields have expanded the concept of chiroptical phenomena. However, chiroptical phenomena originate from complicated processes involving transitions between states with opposite parities, so fundamentals of chiroptical processes are required for solid interpretation the phenomena. Here, theoretical frameworks on chiroptical properties of electromagnetic materials are discussed in the context of microscopic (discrete chiroptical scatterers) and macroscopic (continuous chiroptical media) systems.

“Chiral object refers to a three-dimensional object that cannot be superimposed onto its mirror image using only translations and rotations. Such chiral objects interact differently with left- and right-circularly polarized lights, and absorption difference at these two circular polarizations (circular dichroism) has been widely used to characterize chiroptical properties of the chiral objects. However, (geometric) chirality is a qualitative property; that is, we do not say one’s hand is more chiral than another’s hand. On the other hand, observed chiroptical effects are measurable quantities. By introducing chiroptical parameters, the chiroptical effects can be described and the degree of electromagnetic chirality can be defined and quantified.”

Additionally, chiroptical properties of electromagnetic fields are discussed in the context of local density of field chirality and its flux, which have been defined as the optical chirality and optical helicity. Also, helical beams with intrinsic orbital angular momentum are discussed as another class of chiral light.

“Generally speaking, a chiral phenomenon involves two chiral objects, where one chiral object differently interacts with another chiral object and its enantiomer (mirror image). In chiroptical phenomena, one of the chiral objects is the light itself. By recognizing that light can also be chiral, the degree of chirality of the field can also be quantified.”

Several chiroptical phenomena are discussed under the framework of using the identical chiroptical parameters of the fields and materials. This approach provides a clear understanding of several chiroptical phenomena including intrinsic and extrinsic chirality, enantioselective scattering, molecular sensing, and optomechanical effects. This review paper will be helpful to understand complicated chiroptical phenomena and for designing and optimizing chiroptical systems and fields with well-defined figure of merit.

###

Media Contact
Junsuk Rho
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00367-8

Tags: Chemistry/Physics/Materials SciencesOptics
Share13Tweet8Share2ShareShareShare2

Related Posts

Four Breakthrough Applications Propel TENG Technology into the Spotlight

Four Breakthrough Applications Propel TENG Technology into the Spotlight

August 22, 2025
blank

Unraveling Cation-Coupled Mechanisms in Electrochemical CO2 Reduction Through Electrokinetic Analysis

August 22, 2025

New Study Reveals Hidden Turbulence in Polymer Fluids

August 22, 2025

Deep Learning Framework Unveils the Evolution of Nanoscience Characterization Techniques

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biomimetic Magnetobots Revolutionize Pneumonia Treatment

ERBB3 Drives Ferroptosis by Altering Lipids in Cancer

University of Ottawa Enters the Betavoltaic Battery Commercialization Arena

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.