• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Efficient genetic modification of immune cells

Bioengineer by Bioengineer
April 5, 2018
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new method enables genes in living T-cells in mice to be modified quickly and efficiently. It makes use of plasmids, a tried-and-tested method of genetic engineering. Researchers from the Department of Biomedicine at the University of Basel and University Hospital Basel reported these findings in the Journal of Immunology.

Molecular biological methods such as CRISPR-Cas9 – more commonly known as molecular scissors – can be used to selectively modify genes in living cells. Scientists have now adjusted the process to enable T-cells from mice, an essential part of the immune system, to be efficiently genetically modified. This direct manipulation of immune cells opens up new opportunities for research and could reduce the time-consuming breeding of genetically modified mice.

From a mouse back into a mouse

For their study, the researchers, led by Professor Lukas Jeker from the University of Basel and University Hospital Basel, took T-cells from a mouse and cultured them in the lab. They then used a plasmid – a proven delivery vehicle – to introduce two elements into the cells via an electrical impulse: RNA molecules, which attach to a specific section of double-stranded DNA, and the protein Cas9, which cuts the DNA at this site.

The ensuing, frequently faulty repair often switches off the gene. It is also possible to rewrite individual DNA building blocks in the genetic material, but this is much more difficult and less efficient. Two days after taking them out, the cells are transferred back into mice.

Fully functional

The altered T-cells survived in the recipient mouse and were fully functional: they multiplied, migrated to lymph nodes and the spleen, and behaved as expected during an infection. They thereby fulfilled the prerequisites needed for the potential therapeutic use of genetically modified T-cells.

Using specially developed tests, the researchers were able to further increase the efficiency of the tiny, precise mutations. They also succeeded in using the method to repair a mutation in the FOXP3 gene that causes severe autoimmune diseases in mice. Since the method uses simple techniques, it is also of interest to research groups with a limited budget.

"Our method allows targeted gene surgery in T-cells and opens up new perspectives for research into the immune system, and possibly for the development of new T-cell-based therapies," says Lukas Jeker, Professor of Experimental Transplantation Immunology and Nephrology at the University of Basel.

T-cell therapies are currently enjoying great success in the fight against cancer. It is therefore hoped that genetically reprogramming human T-cells could also be of use in future treatments of cancer, autoimmune diseases and severe infections as well as in transplantation medicine. The research group is therefore working to refine the technique and transfer it to human T-cells.

###

Media Contact

Reto Caluori
[email protected]
41-612-072-495
@UniBasel_en

http://www.unibas.ch/

https://www.unibas.ch/en/News-Events/News/Uni-Research/Efficient-genetic-modification-of-immune-cells.html

Related Journal Article

http://dx.doi.org/10.4049/jimmunol.1701121

Share12Tweet8Share2ShareShareShare2

Related Posts

Menopause Care: Insights from Workforce Review and Consultation

February 7, 2026

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

February 7, 2026

3D Gut-Brain-Vascular Model Reveals Disease Links

February 7, 2026

Low-Inflammation in Elderly UTIs: Risks and Resistance

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Menopause Care: Insights from Workforce Review and Consultation

LRRK2R1627P Mutation Boosts Gut Inflammation, α-Synuclein

3D Gut-Brain-Vascular Model Reveals Disease Links

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.