• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ecological impacts of palm stearin spill to the coastal ecosystem

Bioengineer by Bioengineer
December 20, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HKU marine ecologists reveal ecological impacts of the accidental palm stearin spill to the coastal ecosystem of Hong Kong

IMAGE

Credit: @The University of Hong Kong


In August 2017, a marine accident occurred in the Pearl River Estuary where a cargo vessel accidentally released about 1,000 tonnes of palm stearin into the sea. Over 200 tonnes of palm stearin reached the southwest coasts of Hong Kong. The general public and green groups expressed concerns that such palm oil pollution could adversely affect the marine life and marine ecosystem, yet there was a lack of scientific information on the toxicity of the palm stearin toward marine organisms in the scientific literature, making it impossible to accurately evaluate its ecological risk.

Subsequently, Professor Kenneth Leung Mei Yee from School of Biological Sciences and the Swire Institute of Marine Science, The University of Hong Kong (HKU) and his research team launched a comprehensive 18-month investigation on the degradation, bioaccumulation, and toxicity of the palm stearin through bother field- and laboratory-based investigations. The study sites included Hung Shing Yeh Beach, Deep Water Bay, Repulse Bay, Chung Hom Kok, Outer Tai Tam and Inner Tai Tam. The results of the study were published in the international journal Environmental Science & Technology.

The results of the field-based study showed that the palm stearin could dissolve in seawater and sediment under elevated temperature, and marine organisms could be contaminated by the oil. In early August 2017, samples of the tissues of marine gastropod species, seawater and sediment were found to have high level of fatty acids, especially C16:0 fatty acid which is dominant in the palm stearin.

After the incident, the Hong Kong SAR Government and local citizens made concerted efforts in removing the palm stearin from the impacted shores. Such important actions effectively stopped their further contamination and helped to minimise negative impacts brought by the palm stearin.

In November 2017 (i.e. four months after the incident), the concentration of fatty acids in both seawater and sediment samples returned to the natural levels. Nonetheless, the concentration of fatty acids remained high in the marine gastropods; this might be due to a natural cause that the animals intensified their uptake of food to store more energy for winter.

The results of the laboratory experiment suggested that the rates of disintegration and degradation of the palm stearin were very slow. After deploying the palm stearin in seawater for a year under laboratory conditions, only about 10% of the palm stearin could be disintegrated and degraded.

After studying the toxicity of palm stearin on 10 different marine species, the research team also revealed that the palm stearin posed notable adverse effects on pelagic planktons and zooplanktons. It could prohibit the growth of microalgae (e.g. diatoms) and cause mortality to pelagic copepods, rotifers and brine shrimps. Benthic copepod and marine medaka fish were more tolerant to the palm stearin. Although the fish could eat the palm stearin, their growth was inhibited. Reproduction of the benthic copepod was greatly reduced after exposure to the palm stearin.

Combining the above findings, the research team conducted a scientific ecological risk assessment. The results indicated that the ecological risk was very high right after the accidental spill in August 2017 (risk quotient (RQ) at all sites >> 1). Fortunately, the ecological risk was substantially reduced after 4 months of the incident (RQ

The results of this study highlighted the importance of the immediate action for removal of the palm stearin from the shores, because these could minimise their long-term impact to the marine environment. As there is an ever-increasing trend of marine trade, the number and frequency of marine accidents are expected to rise. This study, therefore, provides useful scientific information to authorities around the world for them to make informed decision in risk assessment and management of similar crises in future.

###

The published article:

Zhou G.J., Lai R.W.S., Sham R.C.T., Lam C.S., Yeung K.W.Y., Astudillo J.C., Ho K.K.Y., Yung M.M.N., Yau J.K.C., Leung K.M.Y. 2019. ‘Accidental spill of palm stearin poses relatively short-term ecological risks to a tropical coastal marine ecosystem.’ in Environmental Science & Technology 53(21), 12269-12277.

Link to the article: https://pubs.acs.org/doi/10.1021/acs.est.9b04636#

Media Contact
Benjamin Miu
[email protected]
852-391-74948

Related Journal Article

http://dx.doi.org/10.1021/acs.est.9b04636

Tags: Atmospheric SciencePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Discovery Reveals Early Hominin Species Coexisted in Ethiopia

August 13, 2025
Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

Genetic Breakthrough: The Unique DNA Factor That Distinguishes Humans

August 13, 2025

Mizzou Researchers Uncover New Insights into Immune Response to Influenza

August 13, 2025

‘Essentiality’ Scan Uncovers Microbe’s Vital Survival Toolkit

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synaptic Loss and Connectivity Drops in Depressed PD Mice

Arginine-Infused Dentifrices Demonstrate Significant Reduction in Childhood Dental Caries

Nationwide Study Shows PSMA PET/CT Before Salvage Radiotherapy Enhances Overall Survival in Prostate Cancer Patients

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.