• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ebola: Early immune response provides insight into vaccination

Bioengineer by Bioengineer
September 7, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The latest outbreaks of emerging, dangerous pathogens, such as Ebola, MERS-CoV or Zika, emphasise the importance of the rapid development of effective vaccines. However, being able to predict the efficacy of new vaccines is and remains a challenge in vaccine development. DZIF scientists at the Heinrich Pette Institute and the University Medical Centre Hamburg-Eppendorf (UKE) were successful in their study in assessing early on the longer-term immune response in humans after being vaccinated with the newly developed Ebola vaccine "rVSV-ZEBOV". The study results provide approaches for searching for new strategies to improve the efficacy of vaccines.

rVSV-ZEBOV is one of the most promising vaccine candidates against the dreaded Ebola virus. In phase I of the clinical trial in 2016, it proved to be a safe and effective vaccine and is expected to be approved this year by the U.S. FDA. rVSV-ZEBOV is based on the vesicular stomatitis virus (VSV) – when weakened and genetically modified, it expresses a glycoprotein of the Ebola virus. To date, there has been relatively little scientific data about the immune responses to VSV. Until now, there has been no data at all on early responses of the innate immune system in humans who have been vaccinated with VSV. The current study is adopting a systems vaccinology approach. Using high-throughput technologies, in which tests can be carried out on a huge number of samples at the same time as well as statistical models, immune responses to the vaccine can be systematically analysed: "Following vaccination with rVSV-ZEBOV, we identified a signature of five early innate immune markers correlating with the antibody titer four weeks after vaccination," explained Dr Anne Rechtien, DZIF scientist at the Heinrich Pette Institute, Leibniz Institute for Experimental Virology, physician at the UKE and lead author of the study. To do so, blood samples from days 0, 1, 3, 7 and 14 after vaccination were examined for various biomarkers. Among these immune markers was IP-10 (interferon-gamma induced protein 10) – a cytokine, i.e. protein, produced by the immune system cells. This is the first time that a soluble immune marker could successfully be identified that is "activated" early after vaccination, can be quickly detected and correlates with the degree of subsequent antibody response regardless of other early immune markers.

The current study is contributing to the better understanding of the immunological properties of VSV-based vaccines which could lead to a vaccination of people: It shows that VSV triggers a quick and strong activation of the innate immune system. Systems vaccinology approaches such as in this study can help to identify early immune markers that enable the long-term efficacy of vaccines to be predicted. Thus, the study results could provide important findings for the development of emergency vaccines such as vaccines against the Zika virus: For example, one approach would be to increase the efficacy of the vaccine by manipulating IP-10.

###

Background

The development of the vaccine candidate "rVSV-ZEBOV" was supported by the WHO-led VEBCON. The German Centre for Infection Research supported the preparation of the studies at the UKE in Hamburg and in Gabon and provided the initial funding, the Federal Ministry of Health (BMG) and the British Wellcome Trust provided the funds to prepare and conduct the clinical trial. The Canadian health authorities donated the vaccine candidate to the WHO, which then made it available for these trials.

Contact

Prof Marylyn Addo
University Medical Centre Hamburg-Eppendorf
German Centre for Infection Research
[email protected]

Dr Anne Rechtien
Heinrich Pette Institute, Leibniz Institute for Experimental Virology
University Medical Centre Hamburg-Eppendorf
German Centre for Infection Research
[email protected]

Media Contact

Dr. Anne Rechtien
[email protected]

http://www.dzif.de/en/

http://dx.doi.org/10.1016/j.celrep.2017.08.023

Share12Tweet7Share2ShareShareShare1

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.