• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Eastern Oregon forest restoration efforts hampered by diameter limits on tree cutting

Bioengineer by Bioengineer
March 9, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by James Johnston, OSU College of Forestry

CORVALLIS, Ore. – A quarter-century-old harvesting restriction intended to last one year has served as an obstacle to returning eastern Oregon national forests to the healthier, more fire-resilient conditions they embodied in the late 1800s, research by the Oregon State University College of Forestry shows.

The findings, published in Ecosphere, are both important and timely because the U.S. Forest Service recently revised what has widely become known as the “21-inch rule” – a prohibition against cutting trees greater than 21 inches in diameter at breast height on Forest Service land in eastern Oregon.

“Under the old policy, live trees more than 21 inches in diameter couldn’t be cut,” said the study’s lead author, James Johnston. “The simulations we conducted show that a quarter of mixed conifer stands east of the Cascades couldn’t be restored to historical forest density or basal area under this 21-inch rule.”

A stand’s basal area is the total surface area of all the stumps that would be created if every tree in the stand were cut at 4.5 feet.

Johnston, College of Forestry colleagues Skye Greenler and Chris Dunn and collaborators from the U.S. Forest Service looked at hundreds of long-term research plots within a 2.5-million-acre study area in eastern Oregon to summarize historical and current forest structure and composition.

The scientists then ran a range of simulations to learn the degree to which thinning under different diameter limits restored mixed conifer stands to late-1800s conditions: less dense, less basal area and a lower proportion of shade-tolerant species than are currently found within stands.

“Historical conditions were much better suited for old growth trees,” said Johnston. “Since we began to suppress fires that maintained open stands of widely spaced old trees, competition from young trees, including fairly large fir that established in the absence of fire, is killing old growth trees faster than they can be replaced.”

Diameter limits were widely adopted by Forest Service managers throughout the 1990s, Johnston said, in the face of social and legal pressure to conserve old growth habitat. Eastern Oregon’s diameter rule was supposed to be temporary as the Forest Service put together a comprehensive ecosystem management plan, but that process stalled, meaning the 21-inch rule is now 25 years past its original sunset date.

“With the Forest Service’s 21-inch rule for eastern Oregon, even stands that could be restored to their historical basal areas still had a lot more shade-tolerant trees than they did historically,” Greenler said. “But allowing the larger shade-tolerant trees to be removed helps reduce competition around old growth trees and improves their chances in the face of future stress.”

The Forest Service, Johnston added, recently completed a National Environmental Policy Act planning effort to reflect the best available science regarding diameter limits’ effects on restoration efforts.

“The cutting of big trees is controversial, especially in mixed conifer stands that have complex structures and a wide range of species and age classes,” he said. “But collaborative research like ours has the potential to build social license for that type of cutting when it makes sense in the big picture of restoring forests.”

Assisting with this study were the Blue Mountains Forest Partners and the Malheur National Forest. The study makes use of data collected in the field over the last six years as part of a partnership between the Blue Mountains Forest Partners, the Forest Service and Oregon State University.

“We used data from real trees we measured in real forests,” said Greenler, “but instead of thinning hundreds of thousands of acres and remeasuring those stands, we wrote a computer program that simulates years worth of thinning in seconds. It’s exciting to develop these tools with managers and stakeholders and to be able to use these results to inform policy change.”

###

The Forest Service and the Blue Mountains Forest Partners provided funding.

Johnston and his co-authors have two other articles pending on the 21-inch rule. A paper to be published in the Journal of Forestry argues that a big-data approach is necessary to monitor the health of old growth trees in eastern Oregon. The other, to appear in Frontiers in Forests and Global Change, describes the implications of the 21-inch rule on carbon storage.

Media Contact
James Johnston
[email protected]

Original Source

https://beav.es/Jbk

Related Journal Article

http://dx.doi.org/10.1002/ecs2.3394

Tags: AgricultureEcology/EnvironmentForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Skin Microbiome Changes in Multiple System Atrophy

August 23, 2025
Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

August 23, 2025

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

August 23, 2025

Ancient Skull Sheds Light on Plotopteridae Origins

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skin Microbiome Changes in Multiple System Atrophy

Cylindrical Spathe’s Handedness Matches Arisaema Spiral Direction

Sustainable Detection of Ofloxacin with PGCN-Modified Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.