• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Eastern Oregon forest restoration efforts hampered by diameter limits on tree cutting

Bioengineer by Bioengineer
March 9, 2021
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo by James Johnston, OSU College of Forestry

CORVALLIS, Ore. – A quarter-century-old harvesting restriction intended to last one year has served as an obstacle to returning eastern Oregon national forests to the healthier, more fire-resilient conditions they embodied in the late 1800s, research by the Oregon State University College of Forestry shows.

The findings, published in Ecosphere, are both important and timely because the U.S. Forest Service recently revised what has widely become known as the “21-inch rule” – a prohibition against cutting trees greater than 21 inches in diameter at breast height on Forest Service land in eastern Oregon.

“Under the old policy, live trees more than 21 inches in diameter couldn’t be cut,” said the study’s lead author, James Johnston. “The simulations we conducted show that a quarter of mixed conifer stands east of the Cascades couldn’t be restored to historical forest density or basal area under this 21-inch rule.”

A stand’s basal area is the total surface area of all the stumps that would be created if every tree in the stand were cut at 4.5 feet.

Johnston, College of Forestry colleagues Skye Greenler and Chris Dunn and collaborators from the U.S. Forest Service looked at hundreds of long-term research plots within a 2.5-million-acre study area in eastern Oregon to summarize historical and current forest structure and composition.

The scientists then ran a range of simulations to learn the degree to which thinning under different diameter limits restored mixed conifer stands to late-1800s conditions: less dense, less basal area and a lower proportion of shade-tolerant species than are currently found within stands.

“Historical conditions were much better suited for old growth trees,” said Johnston. “Since we began to suppress fires that maintained open stands of widely spaced old trees, competition from young trees, including fairly large fir that established in the absence of fire, is killing old growth trees faster than they can be replaced.”

Diameter limits were widely adopted by Forest Service managers throughout the 1990s, Johnston said, in the face of social and legal pressure to conserve old growth habitat. Eastern Oregon’s diameter rule was supposed to be temporary as the Forest Service put together a comprehensive ecosystem management plan, but that process stalled, meaning the 21-inch rule is now 25 years past its original sunset date.

“With the Forest Service’s 21-inch rule for eastern Oregon, even stands that could be restored to their historical basal areas still had a lot more shade-tolerant trees than they did historically,” Greenler said. “But allowing the larger shade-tolerant trees to be removed helps reduce competition around old growth trees and improves their chances in the face of future stress.”

The Forest Service, Johnston added, recently completed a National Environmental Policy Act planning effort to reflect the best available science regarding diameter limits’ effects on restoration efforts.

“The cutting of big trees is controversial, especially in mixed conifer stands that have complex structures and a wide range of species and age classes,” he said. “But collaborative research like ours has the potential to build social license for that type of cutting when it makes sense in the big picture of restoring forests.”

Assisting with this study were the Blue Mountains Forest Partners and the Malheur National Forest. The study makes use of data collected in the field over the last six years as part of a partnership between the Blue Mountains Forest Partners, the Forest Service and Oregon State University.

“We used data from real trees we measured in real forests,” said Greenler, “but instead of thinning hundreds of thousands of acres and remeasuring those stands, we wrote a computer program that simulates years worth of thinning in seconds. It’s exciting to develop these tools with managers and stakeholders and to be able to use these results to inform policy change.”

###

The Forest Service and the Blue Mountains Forest Partners provided funding.

Johnston and his co-authors have two other articles pending on the 21-inch rule. A paper to be published in the Journal of Forestry argues that a big-data approach is necessary to monitor the health of old growth trees in eastern Oregon. The other, to appear in Frontiers in Forests and Global Change, describes the implications of the 21-inch rule on carbon storage.

Media Contact
James Johnston
[email protected]

Original Source

https://beav.es/Jbk

Related Journal Article

http://dx.doi.org/10.1002/ecs2.3394

Tags: AgricultureEcology/EnvironmentForestryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Examining Patient Perspectives on Autism Diagnosis

November 1, 2025
blank

Unlocking Metal Recovery from Manganese Residues

November 1, 2025

Barriers and Boosts to Person-Centered Nursing Care

November 1, 2025

Racial Disparities in Prostate Cancer Treatment Explored

November 1, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Examining Patient Perspectives on Autism Diagnosis

Unlocking Metal Recovery from Manganese Residues

Barriers and Boosts to Person-Centered Nursing Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.