• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Earlier treatment could help reverse autistic-like behavior in tuberous sclerosis

Bioengineer by Bioengineer
October 9, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Peter Tsai

New research on autism has found, in a mouse model, that drug treatment at a young age can reverse social impairments. But the same intervention was not effective at an older age.

The study is the first to shed light on the crucial timing of therapy to improve social impairments in a condition associated with autism spectrum disorder. The paper, from Boston Children's Hospital, the University of Texas, Harvard Medical School and Toronto's Hospital for Sick Children, was published today in Cell Reports.

Tuberous sclerosis and autism

Many of the hundreds of genes that likely regulate complex cognitive and neuropsychiatric behaviors in people with autism still remain a mystery. However, genetic disorders such as tuberous sclerosis complex, or TSC, are providing clues. Patients often have mutations in the TSC1 or TSC2 gene, and about half develop autism spectrum disorder.

The investigators, led by Peter Tsai, MD, PhD, at UT Southwestern Medical Center, used a mouse model in which the TSC1 gene is deleted in a region of the brain called the cerebellum.

"There were several mouse models of TSC previously published, but they all had seizures and died early in life, making it difficult to study social cognition," says Mustafa Sahin, MD, PhD, who directs the Translational Neuroscience Center and the Translational Research Program at Boston Children's and was the study's senior investigator. "That is one reason why we turned to knocking out the TSC1 gene only in cerebellar Purkinje cells, which have been implicated in autism. These mice have normal lifespans and do not develop seizures."

Timing is everything

The new research fed off a previous study published in 2012. In that study, Sahin and colleagues treated the mutant mice starting in the first week of life with rapamycin, a drug approved by the FDA for brain tumors, kidney tumors and refractory epilepsy associated with TSC. They found that they could rescue both social deficits and repetitive behaviors.

But when a similar drug, everolimus, was tested in children with TSC, neurocognitive functioning and behavior didn't significantly improve. Sahin and his colleagues wondered whether there was a specific developmental period during which treatment would be effective.

The new mouse study delineates not only the timeframe for effective rapamycin treatment of certain autism-relevant behaviors, but also some of the cellular, electrophysiological and anatomic mechanisms for these sensitive periods.

"We found that treatment initiated in young adulthood, at 6 weeks, rescued social behaviors, but not repetitive behaviors or cognitive inflexibility," says Sahin.

More importantly, neither the social deficits nor the repetitive behaviors responded when the treatment was started at 10 weeks.

Using advanced imaging, the researchers went on to show that the rescue of social behaviors correlates with reversal of specific MRI-based structural changes, cellular pathology and Purkinje cell excitability. Meanwhile, motor learning rescue appeared independent of Purkinje cell survival or rescue of cellular excitability.

A new clinical trial?

Based on the mouse findings, Sahin is now seeking funds to test whether early treatment can improve a broad range of autistic-like behaviors in children with TSC. Specifically, he'll explore whether treatment as early as 12 to 24 months can help prevent both social deficits and repetitive inflexible behaviors. He hopes to see better results than in the earlier clinical trial, which involved children ages 6 to 21.

Past research indicates that different autism-related disorders may have different windows of treatment. For example, animal studies of Rett syndrome suggest that treatment can be effective relatively late in life and still improve neurological outcome.

###

Peter Tsai, first author on the current paper, is a former postdoctoral fellow in the Sahin Lab at Boston Children's. Other key contributors include Wade Regehr, HMS professor of neurobiology, and Jason Lerch, associate professor at the University of Toronto and research scientist at SickKids. The study was supported by the Nancy Lurie Marks Foundation, the Hearst Foundation, the National Institute of Neurologic Disorders and Stroke, the Tuberous Sclerosis Alliance, the Boston Children's Hospital Translational Research Program and Intellectual and Developmental Disabilities Research Center, the Canadian Institute for Health Research, Ontario Brain Institute and Brain Canada.

About Boston Children's Hospital

Boston Children's Hospital, the primary pediatric teaching affiliate of Harvard Medical School, is home to the world's largest research enterprise based at a pediatric medical center. Its discoveries have benefited both children and adults since 1869. Today, more than 3,000 scientists, including 8 members of the National Academy of Sciences, 17 members of the National Academy of Medicine and 12 Howard Hughes Medical Investigators comprise Boston Children's research community. Founded as a 20-bed hospital for children, Boston Children's is now a 415-bed comprehensive center for pediatric and adolescent health care. For more, visit our Vector and Thriving blogs and follow us on social media @BostonChildrens, @BCH_Innovation, Facebook and YouTube.

Media Contact

Bethany Tripp
[email protected]
617-919-3110
@BostonChildrens

http://www.childrenshospital.org/newsroom

Original Source

https://vector.childrenshospital.org/2018/10/rapamycin-autism-tuberous-sclerosis/ http://dx.doi.org/10.1016/j.celrep.2018.09.039

Share12Tweet7Share2ShareShareShare1

Related Posts

Intranasal H5 Vaccine Primes Broad Flu Protection

November 6, 2025

CRISPR Live Imaging Unveils Chromatin and Enhancer Dynamics

November 6, 2025

Eight Millennia of Unknown Argentine Lineage Revealed

November 6, 2025

Intranasal Influenza Vaccine Shows Broad Immune Response in Early Clinical Trial

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Intranasal H5 Vaccine Primes Broad Flu Protection

CRISPR Live Imaging Unveils Chromatin and Enhancer Dynamics

Hydrogen Projects’ Impact on Global Emission Cuts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.