• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Earlier puberty onset may be one of the ways that childhood risk factors affect adult cardiometabolic health

Bioengineer by Bioengineer
March 27, 2024
in Health
Reading Time: 3 mins read
0
Pubertal timing: A life course pathway linking early life risk to adulthood cardiometabolic health
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Experiencing puberty earlier, compared to same-age peers, may be one of the mechanisms through which childhood risk factors influence adult cardiometabolic health issues, according to a study published March 27, 2024 in the open-access journal PLOS ONE by Maria Bleil from the University of Washington, USA and colleagues.

Pubertal timing: A life course pathway linking early life risk to adulthood cardiometabolic health

Credit: Mohamed_hassan, Pixabay, CC0 (https://creativecommons.org/publicdomain/zero/1.0/)

Experiencing puberty earlier, compared to same-age peers, may be one of the mechanisms through which childhood risk factors influence adult cardiometabolic health issues, according to a study published March 27, 2024 in the open-access journal PLOS ONE by Maria Bleil from the University of Washington, USA and colleagues.

Adverse experiences in childhood are frequently linked to poor health in adulthood. Most of the conceptual models describing adversity-related changes that may be adaptive to stress in the short-term but are risky to long-term health don’t specifically include puberty, which links childhood and adulthood and is itself also sensitive to the child’s environment. Earlier onset of puberty is often linked to factors like race (with Black and Latina girls developing earlier than White girls), mother’s age at her first period, infant weight gain and childhood obesity, and adverse experiences like childhood socioeconomic disadvantage, stressful parent-child relationships, and other stressful life events.

Here, Bleil and colleagues modeled pubertal timing and health risks in a cohort of women who had participated in the 30-year NICHD Study of Early Child Care and Youth Development prospective study of children and their families. Participants were followed from birth to adolescence (1991-2009) to examine trajectories of child health and development, with an additional in-person study follow-up (2018-2022) among participants ages 26 to 31 to capture social, behavioral, and health status information in adulthood. The authors fit models to data from the full sample of 655 women.

The authors found that later pubertal onset (later breast development, pubic hair onset, and first period) predicted lower adulthood cardiometabolic risk. These puberty indicators were also found to mediate the effects of factors like mother’s age at her first period, race, BMI percentile, and childhood socioeconomic status on adult cardiometabolic risk. 

It’s important to note that this study maps predictive relationships between childhood risk factors, timing of puberty, and adulthood cardiometabolic risks, but cannot prove causation. That said, the pattern of results provides strong longitudinal evidence for the role of puberty onset as a pathway linking early life exposures and adulthood cardiometabolic health—and suggests targeting puberty onset may improve health more broadly in at-risk girls. The authors hope future studies will both replicate their findings and better characterize the nature of the links identified here.

The authors add: “This study suggests the timing of pubertal development in girls is an important pathway through which early life risk factors, such as prepubertal body mass index and socioeconomic position, influence cardiometabolic health in adulthood. The implications of this work are that pubertal development and its timing should be considered, and potentially targeted, in efforts to improve cardiometabolic health.”

#####

In your coverage please use this URL to provide access to the freely available article in PLOS ONE: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299433

Citation: Bleil ME, Appelhans BM, Gregorich SE, Hiatt RA, Roisman GI, Booth-LaForce C (2024) Pubertal timing: A life course pathway linking early life risk to adulthood cardiometabolic health. PLoS ONE 19(3): e0299433. https://doi.org/10.1371/journal.pone.0299433

Author Countries: USA

Funding: This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, nichd.nih.gov, (U10HD025447 [SECCYD Research Network, CBLF], R01HD091132 [MEB, GIR]) and the National Heart, Lung, and Blood Institute, nhlbi.nih.gov, (R01HL130103 [MEB]) at the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.



Journal

PLoS ONE

DOI

10.1371/journal.pone.0299433

Method of Research

Observational study

Subject of Research

People

Article Title

Pubertal timing: A life course pathway linking early life risk to adulthood cardiometabolic health

Article Publication Date

27-Mar-2024

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.